• 제목/요약/키워드: 전자 메일 분류

검색결과 41건 처리시간 0.032초

퍼지 관계 곱을 이용한 정크메일 분류 시스템 (A Junkmail Checking System Using Fuzzy Relational Products)

  • 박정선;김창민;김용기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.341-344
    • /
    • 2001
  • 20세기 후반 인터넷의 발전을 기반으로 전자메일은 현재의 대표적인 개인간 정보전달 수단으로 자리 잡게 되었다. 그러나 전자메일 사용자들은 인터넷상에 개인 전자메일 주소가 노출되므로 해서 많은 정크메일(junkmail)을 수신하게 되었는데, 정크메일이란 기업의 광고 선전물과 같이 수신을 원하지 않는 전자메일을 의미한다. 이러한 정크메일의 증가에 따라 정크메일을 분류하는 수단이 필요하게 되었는데, 현재까지는 사용자가 입력한 송신자의 전자메일 주소 또는 도메인 주소를 등록하여 차단하거나 제목에 특정 단어를 포함한 메일을 완전히 삭제하여 버리는 기술수준에 머무르고 있다. 본 논문에서는 퍼지 관계 곱을 기반으로 메일의 내용에 의미적으로 접근하여 정크메일을 분류하는 시스템을 제안한다. 이는 퍼지 관계곱 연산을 이용하여 미리 정의한 정크용어들과 사용자에게 수신되는 전자메일 내의 용어들간 의미적 포함관계를 분석하고 그를 통해 전자메일의 정크도(degree of junk)를 추출한다. 각 전자메일별로 추출된 정크도는 사용자가 부여하는 정크 기준치(SVJ, Standard Value of Junk)를 기분으로 정크메일과 비 정크메일로 분류한다. 제안된 기법은 사용자가 특정 개수의 동일한 전자메일에 대해 느끼는 정크도를 기준으로 분류한 정크메일 수를 비교하여 그 효용성을 증명하였다.

  • PDF

텍스트와 도메인 네임을 이용한 메일 분류 (E-Mail Classification Using Text and Domain Name)

  • 김원화;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.256-258
    • /
    • 2003
  • 정보화 시대에는 사람들의 모든 활동이 인터넷을 통해서 대부분 이루어진다. 이중에서 전자 메일이 차지하는 비중은 매우 크다. 고객 유치를 위한 기업들의 광고와 배움을 위한 강의, 자신의 관심 분야에 대한 정보 등을 전자 매일로 받아보게 되는 것이 더 많아 질것이다. 이러한 상황에서 사람들은 자신이 필요로 하는 메일과 필요로 하지 않는 메일을 분류하는데 많은 시간을 낭비한다. 사람들은 이러한 시간 낭비를 줄이기 위해서 메일 분류 시스템을 사용한다. 현재 사용되고 있는 매일 분류 시스템은 스팸 매일을 기준으로 하고 있다. 그러나 오분류되는 메일들이 있어 사용자가 스팸 메일을 다시 보는 경우가 있어 한계를 보인다. 본 논문에서는 사람들이 자신이 원하는 메일과 그렇지 않은 메일을 분류하기 위해서 1차 분류로 긍정어와 부정어를 이용하여 전자 메일을 분류하고 2차 분류로 도메인 네임을 이용하여 분류한다.

  • PDF

전자메일 자동관리 시스템을 위한 전자메일 분류기의 성능 비교 (Comparison of e-Mail Classifiers for e-Mail Response Management Systems)

  • 김국표;권영식;백찬영
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2002년도 추계학술대회
    • /
    • pp.411-416
    • /
    • 2002
  • 인터넷의 발전과 더불어 전자메일 사용자가 증가하게 되고, 기업의 고객접촉채널로서 전자메일에 대한 중요성 또한 증가되고 있다. 고객의 요구에 대해 적시에 적절하게 응답하지 못하면 고객의 불만족이 증가하게 되고, 충성도를 감소시켜 결국 장기적 매출 및 수익성 악화를 초래하게 된다. 따라서 고객의 전자메일에 신속, 정확하게 응답할 수 있는 전자 메일 자동관리 시스템의 필요성이 증가되고 있다. 본 연구에서는 나이브 베이지안 학습과 중심점 기반 분류 방법을 이용하여 전자메일 자동관리 시스템에서 전자메일 분류를 수행하는 분류기를 구현한다. 구현된 분류기를 이용하여 실제 기업의 고객 전자메일을 분류하는 실험을 수행하고 두 분류기의 성능을 비교하였다. 실험결과 두 분류기 모두 전자메일 분류에 비교적 우수한 성능을 보였다. 그러나, 클래스 수가 적은 경우 중심점 기반 분류기가 좋은 성능을 보였으나, 학습집합이 작아지면서 두 분류기의 성능 차이는 없었으며, 클래스의 수가 많아지면서 나이브 베이지안 분류기가 더 우수한 성능을 보였다.

  • PDF

퍼지관계곱을 이용한 전자메일의 정크도 추출 (Extracting the Degree of Junk from E-mail using Fuzzy Relational Products)

  • 박정선;김창민;김용기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.224-227
    • /
    • 2001
  • 전자메일은 20세기 후반 인터넷의 발전으로 현재의 정보전달 수단 중 대표적인 개인간 인터넷 통신 수단으로 자리잡게 되었다. 그러나 전자메일 사용자들은 전자메일 주소가 노출되므로 해서 많은 정크메일(junk mail) 즉, 자신이 원하지 않는 전자메일을 수신하게 되었다. 이로 인해 일반 전자메일과 정크메일을 분류하기 위한 수단이 필요하게 되었는데, 현재까지는 사용자가 입력한 송신자의 전자메일 주소 또는 도메인 주소를 등록하여 차단하거나 제목에 특정 단어를 포함한 메일을 완전히 삭제하여 버리는 수준에 머무르고 있다. 본 논문에서는 의미적 접근 기반 정크메일 분류 기법의 기초 모델을 제안한다. 퍼지관계곱을 이용한 전자메일의 정크도 추출은 퍼지관계곱 연산을 이용하여 미리 정의한 정크용어들과 사용자의 수신함에 있는 전자메일 내의 용어들간 의미적 포함관계를 분석하고 그를 통해 전자메일의 정크도(degree of junk)를 추출하는 연구를 제안한다. 제안된 기법을 통해 추출한 정크도는 동일한 전자메일들에 대해 사용자가 느끼는 정크도와 비교하여 효용성을 증명하였다.

  • PDF

링크구조분석을 이용한 스팸메일 분류 (A Spam Mail Classification Using Link Structure Analysis)

  • 이신영;길아라;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.30-39
    • /
    • 2007
  • 기존의 내용기반 스팸메일 분류는 전자메일이 이미지를 많이 가지고 있고 텍스트는 적게 가지고 있을 경우에는 내용을 분석하기 어려우므로 스팸메일을 분류하는 데 한계가 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 전자메일의 구조를 분석하는 링크구조분석 스팸메일 분류 알고리즘을 제안한다. 이것은 전자메일 안의 하이퍼링크의 개수와 하이퍼링크가 가리키는 웹 문서들이 다른 웹 문서에 의해 링크된 수를 측정하여 전자메일의 중요도를 계산한 후 의사결정트리를 학습하여 스팸메일과 정상메일을 분류한다. 또한 위의 링크구조분석 알고리즘과 하이퍼링크의 서버 주소만을 이용한 변형된 링크구조 분석 알고리즘, 그리고 SVM(support vector machine)을 이용한 내용기반 방법을 다수결 원칙으로 결합한 통합 스팸메일 분류 시스템을 제안한다. 실험 결과, 제안한 링크구조분석 알고리즘은 기존의 내용기반 방법 보다 스팸메일 분류 정확도가 94.8%로 약간 향상되었으며 또한 통합 스팸메일 분류 시스템도 내용기반 방법과 비교하여 향상된 97.7%를 나타냈다.

특정 속성과 Co-training을 이용한 전자메일 분류 (E-Mail Filtering with Co-training Based on Specific Features)

  • 류제;윤성희;한광록
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.549-551
    • /
    • 2003
  • 본 논문은 점점 증가되고 있는 SPAM 메일 문제를 해결하기 위한 방법으로써, 특정 속성에 기반을 둔 학습 알고리즘의 co-training을 통한 전자메일 분류 기법을 제안한다. 전자메일 분류는 결국 문서 분류 기술과 다르지 않다. 이미 많은 연구에서 학습 알고리즘을 이용한 문서 분류 기법은 많이 제안되고 검증되었다. 본 논문에서는 이러한 학습 알고리즘들을 co-training을 통하여 해당 메일이 SPAM인지 아닌지 구분하며, 학습의 효율성을 높이기 위하여 전자메일의 특정한 속성들, 예를 들면, 핵심문구나 기타 특정한 문구 및 전자메일의 헤더 정보 등을 학습 기반으로 이용하였다.

  • PDF

퍼지관계곱을 이용한 내용기반 정크메일 분류 모델 (A Junk Mail Checking Model using Fuzzy Relational Products)

  • 박정선;김창민;김용기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권10호
    • /
    • pp.726-735
    • /
    • 2002
  • 인터넷의 발전을 기반으로 전자메일 서비스는 기존 우편 기능을 대체하여 현재의 대표적인 정보 전달 수단으로 자리잡고 있다. 전자메일 사용자의 확산에 따라 많은 기업들은 전자메일을 통한 개인별 카탈로그 보급 식의 광고에 투자를 하게 되었는데, 이는 개인별 취향을 고려한 광고가 가능하다는 잇점을 가진다. 그러나 전자메일 사용자들은 인터넷상에 개인 전자메일 주소가 노출됨에 의해서 많은 정크메일(junk mail)을 수신하게 되었는데, 정크메일이란 기업의 광고 선전물과 같이 수신을 원하지 않는 전자메일을 의미한다. 정크메일의 증가에 따라 정크메일을 분류하는 수단이 필요하게 되었는데, 현재까지는 사용자가 입력한 송신자의 전자메일 주소 또는 도메인 주소를 등록하여 차단하거나 제목에 특정 단어를 포함한 메일을 완전히 삭제하여 버리는 기술수준에 머무르고 있다. 본 논문에서는 퍼지관계곱을 기반으로 메일의 내용에 의미적으로 접근하여 정크메일을 추출하는 정크메일 분류 모델을 제안한다. 이는 퍼지관계곱 연산을 이용하여 미리 정의한 정크용어들과 사용자에게 수신되는 전자메일 내의 용어들 간 의미적 포함관계를 분석하고 그를 통해 전자메일의 정크도(degree of junk)를 추출한다. 각 전자메일별로 추출된 정크도는 사용자가 부여하는 정크 기준치(SVJ, Standard Value of Junk)를 기준으로 정크메일과 비정크메일로 분류한다. 제안된 기법은 사용자가 특정 개수의 동일한 전자메일에 대해 느끼는 정크도를 기준으로 분류한 정크메일 수를 비교하여 그 효용성을 증명하였다.

한글 전자메일에 대한 베이지언 필터의 성능비교 (Comparison of Performance for Korean E-mail Filtering using Bayesian Classifier)

  • 이창범;김지수;김수형;박혁로
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.214-219
    • /
    • 2004
  • 전자 메일은 매우 많은 사람들이 사용하는 편리하고 효율적인 통신 수단이다. 그러나 전자메일 주소를 쉽게 획득할 수 있다면 점을 악용하기 때문에 사용자가 원하지 않는 메일 즉 스팸 메일에 대한 문제가 심각해지고 있다. 이러한 스팸 메일을 자동으로 분류해주는 스팸 필터는 주로 영어를 대상으로 하고 있으며, 규칙 기반 필터링보다는 통계적 학습을 통한 필터링 방법을 주로 사용하고 있다. 본 논문에서는 베이즈 정리를 기반으로 하는 3가지 분류 알고리즘을 한글 전자메일을 대상으로 하여 스팸 메일 특히 음란성 메일을 분류하는데 있어 그 성능을 평가하고자 한다. 실험 결과, 단어의 스팸일 확률만을 이용하는 방법이 나이브 베이즈 알고리즘이나 m-estimate를 이용하는 방법보다는 성능이 우수함을 알 수 있었다 특히, 단어의 스팸일 확률만을 이용하는 방법은 false positive rate를 0%로 유지하면서도 다른 방법들보다는 필터링을 잘 해내고 있음을 확인할 수 있었다. 그리고, 자질 선정에서는 명사나 명사/형용사를 사용할 경우에 그 에러율이 가장 적었다.

  • PDF

유전자 알고리즘을 이용한 전자메일분류 시스템에서의 사용자선호도 추출모델링 (User Modeling in E-Mail Classification System with Genetic Algorithm)

  • 안희국;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.673-675
    • /
    • 2002
  • 본 논문에서는 전자메일을 사용자 적합도(선호도)를 기준으로 분류함에 있어 좀더 사용자 선호도를 반영할 수 있는 시스템 구조를 제안한다. 사용자 선호도는 2단계에 걸쳐서 반영되는데, 1단계에서는 사용자 관련메일로 판단된 메일정보추출어구(MIWs)들로부터 사용자 동적 시소러스(DS)의 갱신을 통해 이뤄지며, 2단계에서는 DS로부터 추출된 키워드들을 갖고 유전자 알고리즘을 작동시킬 때, 사용자선호도 feedback을 받음으로서 이뤄진다. 테스트는 kaist뉴스그룹으로부터 임의로 추출된 5개 분야 10개씩의 메일을 sample로 사용하였으며, DS로부터 추출된 키워드가 유전자알고리즘 모듈을 통해 사용자 feedback을 받았을 때, 세대가 거듭함에 따라 사용자가 요구하는 threshold 값에 근사하게 관련키워드들이 수집되었다. 그 결과 사용자 전자메일분류시스템(PECS)의 성능도 폴더정보키워드(FIWs)의 변화에 따라 향상될 수 있음을 확인하였다.

  • PDF

온톨로지와 Semantic Enrichment를 이용한 스팸 메일 필터링 시스템 (Spam Mail Filtering System using Ontology and Semantic Enrichment)

  • 김현준;김흥남;정재은;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.553-555
    • /
    • 2004
  • 최근 인터넷의 급속한 성장과 더불어 전자메일(I-Mail)은 의사교환의 필수적인 매체로 사용 되어지고 있다. 그러나 편리하고 비용이 들지 앉는 장정을 이용해 엄청난 양의 스맴 메일이 매일같이 솎아져 오고, 이를 해결하기 위한 다양한 연구들이 제시되어져 왔다. 특히. 문서 분류에 널리 쓰이는 베이지안 분류자(Bayesian classifier)가 가장 널리 이용되어지고 있는데, 정확도와 재현율에서 비교적 우수한 성능을 보이고 있다. 그러나 몇 가지 문제점을 갖고 있는데, 첫째, 사전에 사용자에 의해 스팸. 논스팸 메일에 대한 충분한 학습이 선행되어야 하는 정, 둘째, 필터링을 위한 연산시간이 소요되는 점, 셋째, 필터링의 대상이 되는 메일 본문의 내용이 적을 경우 정확한 필터링이 어렵다는 정 등의 문제점이 있다. 본 논문에서는 마지막 문제점으로 지적된 메일 본문의 내용이 적을 경우 즉, 연산을 위한 특징적인 단어들의 부족으로 정확한 분류가 불가능한 경우의 해결방안으로 온틀로지와 Semantic Enrichment 기법을 이용한 스팸 메일 필터링 시스템을 제안한다. 실험 결과, 제안하는 시스템이 베이지안 분류자를 이용한 분류 시스템보다 정확도에서 4.1%, 재현율에서 10.5%. 그리고 F-measure에서 7.64%의 성능향상을 보였다.

  • PDF