Abstract
In this work a high speed 8-error correcting Reed-Solomon decoder is designed using the modified Euclid algorithm. Decoding algorithm of Reed-Solomon codes consists of four steps, those are, compute syndromes, find error-location polynomials, decide error-locations, and determine error values. The decoding speed is increased and the latency is reduced by using the parallel architecture in the syndrome generator and a faster clock speed in the modified Euclid algorithm block. In addition. the error locator polynomial in Chien search block is separated into even and odd terms to increase the overall speed of the decoder. All the functionalities of the decoder are verified first through C++ programs. Verilog is used for hardware description, and then the decoder is synthesized with a $.25{\mu}m$ CMOS TML library. The functionalities of the chip is also verified through test vectors. The clock speed of the chip is 250MHz, and the maximum data rate is 1Gbps.
본 논문에서는 Modified Euclid 알고리즘을 이용하여 고속의 Reed-Solomon 복호기를 설계하였다. Reed-Solomon 부호의 복호 알고리즘은 오증을 계산하고, 에러 위치 다항식을 구한 후, 에러를 판단하여, 에러 크기 값을 구하는 4단계로 이루어지는데, 본 논문에서는 복호기의 속도를 증가시키고 Latency를 줄이기 위하여 병렬구조의 신드롬 생성기와 빠른 클록 속도의 Modified Euclid 알고리즘 블록을 사용하였으며, Chien Search 블록에서는 에러 위치 다항식을 짝수항과 홀수항으로 나누어 설계하였다. 먼저, 알고리즘과 회로의 동작을 확인하기 위해 C++로 프로그램을 작성하여 검증을 한 후, 이를 바탕으로 Verilog로 하드웨어를 기술하였다. 또한, 각 블록에 대한 로직 시뮬레이션을 거친 후, $.25{\mu}m$ CMOS 라이브러리를 이용하여 Synopsys사의 합성 툴로 합성을 하고, 최종적으로 후반부 설계인 레이아웃을 시행하였다. 본 논문의 칩은 최대 동작 주파수가 250MHz로서 최대 데이터 전송률은 1Gbps이다.