Abstract
This paper presents an image segmentation algorithm to obtain the 3D body shape data that the grid pattern and the body contour lute in the background image are extracted using the new proposed hybrid method. The body contour line is extracted based on maximum biased anisotropic recognition(MaxBAR) algorithm which recognizes the most strong and robust edges in the image since the normal derivative at the edges is large, while the tangential derivatives can be small. The grid patterns within body contour lines are extracted by grid pattern detection (GPD). The body contour lilies and the grid patterns are combined. The consecutive run test based on heuristic method is used to link the disconnected line and reduce noise line. This proposed segmentation method is more effective than the conventional method which uses a gradient and a laplacian operator, verified with application two conventional method.
본 논문은 하이브리드 방법을 사용하여 영상내의 체형 외곽 선과 격자 패턴을 추출하여 3차원 체형 데이터를 획득하기 위한 새로운 영상분할 알고리즘을 제안한다. 체형 외곽 선을 추출하기 위한 영상분할 방법으로 최대 값 인식 알고리즘을 사용하였다. 이 방법은 에지에서의 접선 방향 값은 작지만 법선 방향 값은 큰 성질을 이용하여 일정 영역내의 픽셀들간의 변화 값 중 최대 값을 인식하는 알고리즘이다. 그리고 체형 외곽내의 격자 패턴은 격자 패턴 검출 알고리즘을 사용하여 추출하였다. 추출된 체형 외곽 선과 격자 패턴을 결합한 후 휴리스틱 방법인 연속 길이 테스트에 치한 격자 패턴의 연결 및 잡음제거를 하였다. 본 논문에서 제안한 영상분할 방법은 기존의 기울기나 라플라시안 연산방법보다 매우 효과적인 결과를 가져 왔다.