DOI QR코드

DOI QR Code

Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy

급속응고된 Al81-(x+y)Si19NixCey 합금의 나노조직과 기계적 특성

  • 이태행 (천안공업대학 신소재 열공정학과) ;
  • 홍순직 (충남대학교 급속응고 신소재연구소)
  • Published : 2003.12.01

Abstract

In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.

Keywords

References

  1. T. Hayashi, T. Kaji, Y. Takeda, Y. Odani and K. Akechi : Sumitomo Electric Tech. Rev., 34 (1992) 107.
  2. J. Zhou, J. Duszczyk and B. M. Korevaar : J. Mater. Sci., 26 (1991) 824. https://doi.org/10.1007/BF00588323
  3. T. S. Kim and B. S. Chun : J. Kor. Inst. Met & Mater. Vol. 40, 8 (2002) 873.
  4. Y. H. Kim, A. Inoue and T. Masumoto : Mater. Trans., JIM, 32 (1991) 331.
  5. A. Inoue, K. Ohtera, A. P. Tsai and T. Masumoto : Jpn. J. Appl. Phys., 27 (1988) L280. https://doi.org/10.1143/JJAP.27.L280
  6. K. Higashi, T. Mukai, A. Uoya, A. Inoue and T. Masumoto: Mater. Trans. JIM, 36 (1995) 1467.
  7. A. Inoue, K. Ohtera, A. P. Tsai and T. Masumoto : Jpn. J. Appl. Phys., 27 (1988) 479. https://doi.org/10.1143/JJAP.27.L479
  8. H. Chen, Y. He, G. J. Shiflet and S. J. Poon : Scripta Metall. Mater., 25 (1991) 1421. https://doi.org/10.1016/0956-716X(91)90426-2
  9. S. J. Hong, H. S. Kim, C. Suryanarayana and B. S. Chun, Mater. Sci. Tech., 19 (2003) 966. https://doi.org/10.1179/026708303225003036
  10. S. J. Hong, T. S. Kim, H. S. Kim, W. T. Kim and B. S. Chun : Mater. Sci. Eng., A271 (1999) 469. https://doi.org/10.1016/S0921-5093(99)00317-2
  11. S. J. Hong and B. S. Chun : Mater. Sci. Eng., A348 (2003) 262. https://doi.org/10.1016/S0921-5093(02)00728-1
  12. A. Inoue, T. Zhang and T. Masumoto: J. of Non-crystalline Solids, 473 (1999) 156.
  13. T. S. Kim, S. J. Hong, W. T. Kim, C. W. Won, S. S. Cho and B. S. Chun : Mater. Trans. JIM, 39 (1998) 1214. https://doi.org/10.1016/0025-5416(69)90077-9
  14. H. Jones: Mater. Sci. Eng., 5 (1969) 1. https://doi.org/10.1016/0025-5416(69)90077-9
  15. S. J. Hong, T. S. Kim, C. Suryanarayana and B. S. Chun : Metal. Mater. Trans, 32A (2001) 821. https://doi.org/10.1007/s11661-001-1017-6
  16. S. J. Hong, T. S. Kim, W. T. Kim and B. S. Chun : Mater. Sci. Eng., A226 (1997) 878. https://doi.org/10.1016/S0921-5093(96)10811-X