DOI QR코드

DOI QR Code

A Statistical Study of CMP Process in Various Scales

CMP 프로세스의 통계적인 다규모 모델링 연구


Abstract

A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

Keywords

References

  1. Shan, L., Levert, J. A., Tichy, J. and Danyluk, S., 2000, 'Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing,' Journal of Tribology, Vol. 122, No. 3, pp. 539-543 https://doi.org/10.1115/1.555398
  2. Tichy, J., Levert, J., Shan, L. and Danyluk, S., 1999, 'Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing,' Journal of the Electrochemical Society, Vol. 146, pp. 1523-1528 https://doi.org/10.1149/1.1391798
  3. Kim, A. T., Seok, J., Sukam, C. P., Tichy, J. A. and Cale, T. S., 2001, 'A Multiscale Model for Chemical Mechanical Planarization,' Proceedings of the Advaned Metallization Conf. (AMC) in 2001, McKerrow, A., Shacham-Diamand, Y., Zaima, S., Ohba, T. (Eds), MRS, Montreal, Canada, pp. 405-410
  4. Whitehous, D. J. and Archard, J. F., 1970, 'The Properties of Random Surfaces of Significance in Their Contact,' Proceedings of the Royal Society London, Vol. A316, pp. 97-121
  5. Nayak, P. R., 1971, 'Random Process Model of Rough Surfaces,' Journal of Lubrication Technology, Vol. F93, pp. 398-407
  6. Bush, A. W., Gibson, R. D. and Keogh, G. P., 1979, 'Strongly Anisotropic Rough Surfaces,' Journal of Lubrication Technology, Vol. 101, pp. 15-20 https://doi.org/10.1115/1.3453271
  7. Nanz, G. and Camilletti, L. E., 1995, 'Modeling of Chemical-Mechanical Polishing: A Review,' IEEE Trans. Semicon. Manufact., Vol. 8, No. 4, pp. 382-389 https://doi.org/10.1109/66.475179
  8. Grimmett, G. R. and Stirzaker, D. R., 1992, Probability and Random Processes, Oxford Science Publications
  9. Liang, H., Kaufman, F., ;Sevilla, R. and Anjur, S., 1997, 'Wear Phenomena in Chemical Mechanical Polishing,' Wear, Vol. 211, pp. 271-279 https://doi.org/10.1016/S0043-1648(97)00124-5
  10. Lai, W. M., Rubin, D. and Krempl, E., 1993, Continuum Mechanics, 3rd Ed., Pergamon
  11. ANSYS$^TM$ Theory Ref. Manual, 1999, Faculty Research Release 5.6, ANSYS Inc., Canonsburg PA
  12. Seok, J., Sukam, C. P., Kim, A. T., Tichy, J. A. and Cale,T. S., 2003, 'Multiscale Material Removal Modeling of Chemical Mechanical Polishing,' Wear, Vol. 254, pp. 307-320 https://doi.org/10.1016/S0043-1648(03)00022-X
  13. Greenwood, J. A. and P.Williamson, J. B., 1966, 'Contact of Nominally Flat Surfaces,' Proceedings of the Royal Society London, Vol. A295, pp. 300-319 https://doi.org/10.1098/rspa.1966.0242
  14. Yu, T. K., Yu, C. C. and Orlowski, M., 1993, 'A Statistical Polishing Pad Model for Chemical Mechanical Polishing,' IEEE International Devices Meeting, paper 93-865, pp. 865-868 https://doi.org/10.1109/IEDM.1993.347263
  15. Zhang, F., Busnaina, A. A. and Ahmadi, G., 1999, 'Particle Adhesion and Removal in Chemical Mechanical Polishing and Post-CMP Cleaning,' Journal of the Electrochemical Society, Vol. 146, No. 7, pp. 2665-2669 https://doi.org/10.1149/1.1391989
  16. Onions, R. A. and Archard, J. F., 1973, 'The Contact of Surfaces Having a Random Structure,' Journal of Physics, D: Applied Physics, Vol. 6, pp. 289-304 https://doi.org/10.1088/0022-3727/6/3/302
  17. Leung, M., Hsieh, C. K. and Goswami, D. Y., 1997, 'Application of Boltzmann Statistical Mechanics in the Validation of the Gaussian Summit-Height Distribution in Rough Surfaces,' Journal of Tribology, Vol. 119, pp. 846-850 https://doi.org/10.1115/1.2833895
  18. Shan, L., 2000, 'Mechanical Interactions at the Interface of Chemical Mechanical Polishing,' Ph.D. Thesis, Georgia Institute of Technology
  19. Sethian, J. A., 1999, Level Set Methods and Fast Marching Methods, Cambridge University Press
  20. West, A. C., Mayer, S. and Reid, J., 2001, 'A Superfilling Model that Predicts Bump Formation,' Electrochemical Solid State Letters, Vol. 4, No. 7, pp. C50-C53 https://doi.org/10.1149/1.1375856
  21. Cao, Y., Taephaisitphongse, P., Chalupa, R. and West, A. C., 2001, 'Three-Additive Model of Superfilling of Copper,' Journal of the Electrochemical Society, Vol. 148, No. 7, pp. C466-C472 https://doi.org/10.1149/1.1377898
  22. Josell, D., Wheeler, D., Huber, W. H. and Moffat, T. P., 2001, 'Superconformal Electrodeposition in Submicron Features,' Physical Review Letters, Vol. 87, No. 1, pp. 016102-1-016102-4 https://doi.org/10.1103/PhysRevLett.87.016102
  23. Maffat, P., Wheeler, D., Huber, W. H. and Josell, D., 2001, 'Superconformal Electrodeposition of Copper,' Electrochemical Solid State Letters, Vol. 4, No. 4, pp. C26-C29 https://doi.org/10.1149/1.1354496