• 제목/요약/키워드: Modeling in Various Scales

검색결과 25건 처리시간 0.025초

CMP 프로세스의 통계적인 다규모 모델링 연구 (A Statistical Study of CMP Process in Various Scales)

  • 석종원
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Realistic simulation of reinforced concrete structural systems with combine of simplified and rigorous component model

  • Chen, Hung-Ming;Iranata, Data
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.619-645
    • /
    • 2008
  • This study presents the efficiency of simulating structural systems using a method that combines a simplified component model (SCM) and rigorous component model (RCM). To achieve a realistic simulation of structural systems, a numerical model must be adequately capturing the detailed behaviors of real systems at various scales. However, capturing all details represented within an entire structural system by very fine meshes is practically impossible due to technological limitations on computational engineering. Therefore, this research develops an approach to simulate large-scale structural systems that combines a simplified global model with multiple detailed component models adjusted to various scales. Each correlated multi-scale simulation model is linked to others using a multi-level hierarchical modeling simulation method. Simulations are performed using nonlinear finite element analysis. The proposed method is applied in an analysis of a simple reinforced concrete structure and the Reuipu Elementary School (an existing structure), with analysis results then compared to actual onsite observations. The proposed method obtained results very close to onsite observations, indicating the efficiency of the proposed model in simulating structural system behavior.

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.

Thurstonian Modeling for Triangular Method toward Analysis of Rating Data

  • Yu, Si-Nae;Sung, Nae-Kyung
    • 품질경영학회지
    • /
    • 제27권1호
    • /
    • pp.101-110
    • /
    • 1999
  • Products are often evaluated on rating scales to measure and quantify their attributes of interest. In case that one wishes to compare multiple rating datasets simultaneously, there must be a standardized scale with which one can discriminate relative differences among corresponding scale means. In this regard, the concept of Thurstonian modeling applied to various discrimination tests including the triangular method has been recently being reconsidered. In this paper we extend previous researches on the triangular method and evaluate the effect of unequal variances and correlated variables upon the probability of correct response using Monte-Carlo simulation. We observed that the probability of correct response depends on dimensionality, variances, and correlation structure of stimulus sets. But it does not depend on the relative orientation in a multidimensional space.

  • PDF

Searching for X-ray cavities in various galaxy environments

  • Shin, Jaejin;Woo, Jong-Hak;Mulchaey, John S.
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.46.1-46.1
    • /
    • 2014
  • In understanding "cooling flow" problem and the galaxy-SMBH co-evolution, AGN feedback is considered as one of the most important phenomena. Among various AGN feedback phenomena, X-ray cavities are particularly useful for studying AGN feedback over 10 kpc scales, as the origin of X-ray cavities is believed to be related to radio jet from AGN. For a comprehensive study of X-ray cavities, we collect all available diffuse X-ray data of galaxies in various galaxy environments, ranging from field galaxies to galaxy clusters, using the Chandra X-ray data archive. As a result we build up a sample of 87 targets showing enough X-ray photons to perform the analysis. Using modeling and unsharp masking techniques, we detected X-ray cavities and measured their physical properties (i.e., cavity size) for the 49 targets. Here, we present X-ray cavity properties and discuss environmental effects.

  • PDF

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회(2)
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

미끄럼 바닥에서 안정성 유지를 위한 균형 전략과 평가방법 (Measurement and Strategies for Dynamic Stability During Locomotion on a Slippery Surface)

  • 김택훈;윤두식
    • 한국전문물리치료학회지
    • /
    • 제10권1호
    • /
    • pp.97-108
    • /
    • 2003
  • Slipping during various kinds of movement often leads to potentially dangerous incidents of falling. The purpose of this paper was to review some of the research performed in the field including such topics as rating scales for balance, kinematics and kinetics of slipping, adaptation to slippery conditions, postural and balance control, and protective movement during falling. Controlling slipping and fall injuries requires a multifaceted approach. Environmental conditions (state of floor surface, tidiness, lighting, etc), work task (walking, carrying, pushing, lifting, etc), and human behavior (anticipation of hazards, adaptation to risks, risk taking, etc) must be accounted for in the assessment of slip and fall-related risks. Future directions of research must deal with modeling of basic tribophysical, biomechanical, and postural control process involved in slipping and falling.

  • PDF

J2EE 플랫폼에서의 개념적 컴포넌트 모델링 및 컴포넌트 생성 지원 도구 개발 (Development of a Supporting Tool for Conceptual Component Modeling and Component Construction on the J2EE Platform)

  • 이우진;김민정;정양재;윤석진;최연준
    • 정보처리학회논문지D
    • /
    • 제8D권6호
    • /
    • pp.761-770
    • /
    • 2001
  • 소프트웨어 산업이 급속하게 발전해감에 따라 정보 기술 업체간 경쟁이 더욱 심화되어 소프트웨어 재사용성, 적시성, 유지 보수성 등이 업체의 생명력으로 대두되면서 소프트웨어 컴포넌트 기술이 점차 각광을 받고 있다. 현재 몇몇 컴포넌트 생성 지원 도구들이 제공되고 있지만 컴포넌트의 식별, 모델링, 상세 설계, 코드 생성, 전개, 시험 등 컴포넌트 생성 전 과정을 밀접히 연계하여 지원하는 도구가 드물다. 또한, 특정 플랫폼에 의존적인 소규모 컴포넌트 생성에 중점을 두고 있어 사용자 관점의 다양한 규모의 컴포넌트 생성에는 제약이 따른다. 이 논문에서는 컴포넌트 생성에 연관된 모든 과정을 지원하는 컴포넌트 모델링 및 생성 지원 도구의 설계와 프로토타입 구현에 대해 기술한다. 컴포넌트 모델링은 영역 고유의 비즈니스 로직의 재사용 측면에서 컴포넌트 플랫폼 아키텍쳐에 관계없이 개념적인 컴포넌트의 식별 및 모델링을 지원한다. 상세설계 및 코드 생성 부분은 일차적으로 J2EE 플랫폼 아키텍쳐에 의존적으로 지원되며 설계 모델과 소스 코드의 일관성을 동적으로 유지시키는 Round-trip Engineering 기능을 지원한다.

  • PDF