DOI QR코드

DOI QR Code

생체재료의 선택에 따른 조골세포의 형상, 증식 및 분화

Osteoblast Cell Morphology, Proliferation, and Differentiation in Variation with Biomaterials

  • 김학관 (㈜우리동명 치과재료연구소) ;
  • 장주웅 (㈜우리동명 치과재료연구소) ;
  • 정희석 (㈜우리동명 치과재료연구소) ;
  • 이득용 (대림대학 재료정보공학과)
  • 발행 : 2003.06.01

초록

재료의 선택에 따른 생체친화성을 고찰하기 위해서 조골세포의 세포배양실험을 실시하였으며, 이로부터 세포의 부착형상, 증식, 분화의 정도를 살펴보았다. 본 실험에서 세포배양모재는 체내식립재료로 주목을 받고 있는 TiO$_2$, 3Y-TZP, HA (Hydroxyapatite) 그리고 Ti를 사용하였으며 대조군으로 Thermanox를 선택하였다. 일반적으로 모든 시편들은 같은 세포배양시간일때 거의 유사한 세포부착형상을 보였다. 그러나, HA위의 세포들은 나머지 시편들보다 좀 더 두꺼운 형상을 보였으며 빠른 세포의 부착 및 퍼짐으로 인한 overlapping이 자주 관찰되었다. 세포의 증식 및 분화의 경우에도 생체활성의 특성을 지니는 HA가 가장 높은 값을 보였으며 생체불활성재료인 경우에는 Ti, TiO$_2$, 3Y-TZP모두 유의한 차이를 보이지 않고 비슷한 경향을 나타내었다.

Osteoblast-like cell morphology, proliferation, and differentiation were examined in variation with biomaterials. Cells were cultured on TiO$_2$, Ti, 3Y-TZP, HA (Hydroxyapatite) and Thermanox was used as a control specimen. Generally, all specimens have similar cell morphology within the same time interval. However, cells on HA seem to be more thicker than those on TiO$_2$, Ti, 3Y-TZP and cell overlapping was detected very frequently on HA. In case of cell proliferation and differentiation, bioactive material such as HA could help osteoblast-like cell proliferate and provoke a sharp increase of ALP. On the other hand, whether the substrate material is a bioinert ceramics or metal, it does not so strongly affect the cell attachment, proliferation. and differentiation.

키워드

참고문헌

  1. J. Oral Rehab. v.18 Bioactive Glass Particulate Material as a Filler for Bone Lesions E.Schepers;M.Declercq;P.Ducheyne;R.Kempeneers https://doi.org/10.1111/j.1365-2842.1991.tb01689.x
  2. J. Biomed. Mater. Res. v.29 Bioactive Material Template for in vitro Synthesis of Bone A.El-Ghannam;P.Ducheyne;I.M.Shapiro https://doi.org/10.1002/jbm.820290311
  3. Surgery v.39 An Investigation of Tissue Tolerance to Titanium Metal Implants in Dogs O.E.Beder;G.Eade
  4. Acta Orthop. Scand. v.52 Osseointegrated Titanium Implants T.Albrektsson;P.I.Branemark;H.A.Hansson;J.Lindstrom https://doi.org/10.3109/17453678108991776
  5. J. Periodontol. v.62 Titanium Endosseous Implant-soft Tissue Interface T.G.Donley;W.B.Gillette https://doi.org/10.1902/jop.1991.62.2.153
  6. An Introduction(2nd ed.) Biomaterials J.B.Park;R.S.Lakes
  7. Biomaterials v.5 Systemic Effects of Biomaterials J.Black https://doi.org/10.1016/0142-9612(84)90061-9
  8. Electrochimica Acta v.29 Potentiodynamic Behavior of Mechanically Polished Titanium Electrodes O.R.Camara;C.P.De Pauli;M.C.Giordano https://doi.org/10.1016/0013-4686(84)87163-7
  9. J. Electrochem. Soc. v.133 Photoelectrochemical Investigations of Passive Films on Titanium Electrodes K.Leiner;J.W.Schultze;U.Stimming https://doi.org/10.1149/1.2108969
  10. J. Biomed. Mater. Res. v.29 Initial Bone Matrix Formation at the Hydrooxyapatite Interface in vivo J.D.de Brunjin;C.A.van Blitterswijk;J.E.Davies https://doi.org/10.1002/jbm.820290113
  11. Biomaterials v.12 Effect of Surface Treatment on the Dissolution of Titanium-based Implant Materials A.Wisbey;P.J.Gregson;L.M.Peter;M.Tuke https://doi.org/10.1016/0142-9612(91)90144-Y
  12. Appl. Surf. Sci. v.72 Electrochemical Corrosion Analysis and Characterization of Surface-modified Titanium J.L.Ong;L.C.Lucas;G.N.Raiker;J.C.Gregory https://doi.org/10.1016/0169-4332(93)90036-B
  13. Biomaterials v.11 Effect of Calcium Phosphate Coating Characteristics on Early Post-operative Bone Tissue Ingrowth P.Ducheyne;J.Beight;J.Cuckler;B.Evans;S.Radin https://doi.org/10.1016/0142-9612(90)90073-Y
  14. Biomaterials v.15 Structural Arrangements at the Interface between Plasma Sprayed Calcium Phophates and Bone J.D.de Bruijin;Y.P.Bovell;C.A.van Blitterswijk https://doi.org/10.1016/0142-9612(94)90021-3
  15. J. Biomed. Mater. Res. v.27 In vitro Evaluation of Amorphous Calcium Phosphate and Poorly Crystallized Hydroxyapatite Coating on Titanium Implants S.H.Maxian;J.P.Zawadski;M.G.Dunn https://doi.org/10.1002/jbm.820270114
  16. J. Biol. Chem. v.193 Protein Measurement with the Folin Phenol Reagent O.H.Lowry;N.J.Rosebrough;A.L.Farr;R.J.Randall
  17. Anal. Biochem. v.22 A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding M.M.Braford
  18. J. Biomed. Mater. Res. v.23 Effects of a Grooved Titanium Coated Implant Surface on Epithelial Cell Behaviour, in vitro and in vivo B.Chehroudi;T.R.L.Gould;D.M.Brunette https://doi.org/10.1002/jbm.820230907
  19. J. Biomed. Mater. Res. v.24 Titanium-coated Micromachined Grooves of Different Dimensions Affect Epithelial and Connective Tissue Cells Differently in vivo B.Chehroudi;T.R.L.Gould;D.M.Brunette https://doi.org/10.1002/jbm.820240906
  20. J. Biomed. Mater. Res. v.14 Effect of Hydroxyapatite Impregnation on Skeletal Bonding of Porous Coated Implants P.Ducheyne;L.L.Hench;A.Kagan;M.Martens;A.Bursens;J.C.Mulier https://doi.org/10.1002/jbm.820140305
  21. J. Biomed. Mater. Res. v.20 Use of Tricalcium Phosphate or Electrical Stimulation to Enhance the Bone-Porous Implant Interface J.L.Berry;J.M.Geiger;J.M.Moran;J.S.Skraba;A.S.Greenwald https://doi.org/10.1002/jbm.820200107
  22. J. Biomed. Mater. Res. v.27 The Effect of Calcium Phosphate Ceramic Composition and Structure on in vitro Behaviour. I. Dissolution P.Ducheyne;S.Radin;L.King https://doi.org/10.1002/jbm.820270105
  23. J. Biomed. Mater. Res. v.23 Transformation of Biphasic Calcium Phosphate Ceramics in vivo: Ultrastructural and Physicochemical Characterization G.Daculsi;R.Z.LeGeros;E.Nery;K.Lynch;B.Kerebel https://doi.org/10.1002/jbm.820230806
  24. J. Biomed. Mater. Res. v.32 Surface Roughness Modulates the Local Production of Growth Factors an Cytokines by Osteoblast-like MG63 Cells K.Kieswetter;Z.Schwartz;T.W.Hummert;D.L.Cochran;J.Simpson;D.D.Dean;B.D.Boyan https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  25. J. Biomed. Mater. Res. v.39 Titanium Surface Roughness Alters Responsiveness to 1α,25-$(OH)_{2}D_{3}$ B.D.Boyan;R.Batzer;K.Kieswetter;Y.Liu;D.L.Cochran;S. Szmuckler-Moncler;D.D.Dean;Z.Schwartz https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  26. Biomaterials v.17 Evaluation of Implant Materials (Hydroxyapatite, Glass-ceramics, Titanium) in Rat Bone Marrow Stomal Cell Culture S.Ozawa;S.Kasugai https://doi.org/10.1016/0142-9612(96)80751-4
  27. J. Bone Jt. Surg. v.71 The Effect of Hydroxyapatite Coating on Bone Growth into Porous Titanium Alloy Implants H.Oonishi;M.Yamamoto;H.Ishimaru;E.Tsuji;S.Kushitani;M.Aono;Y.Ukon
  28. J. Mater. Sci. Mater. Med. v.12 Hydroxyapatite Particles are Capable of Inducing Osteoclast Formation A.Sabokbar;R.Pandey;J.Diaz;J.M.W.Quinn;D.W.Murray;N.A.Athanasou https://doi.org/10.1023/A:1011267005465
  29. University of Michigan Researcher Reports Substance Checked in Routine Blood Test may Forecast Bone Loss and Osteoporosis J.Lukacs