DOI QR코드

DOI QR Code

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow

정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성

  • 박성우 (대우일렉트로닉스 냉기연구소 품질기획그룹) ;
  • 정석호 (서울대학교 기계항공공학부) ;
  • 김홍집 (한국항공우주연구원 추진기관연구부)
  • Published : 2003.04.01

Abstract

Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Keywords

References

  1. Culick, F. E. C., 1983,' Combustion Instabilities in Liquid-Fueled Propulsion Systems - An Overview,' AGARD 72B PEP Meeting
  2. Harrje, D. J. and Reardon, F. H, (eds.), 1972, Liquid Propellant Rocket Combustion Instability, NASA SP-194
  3. Kim, J. S. and Willams, F. A., 1994,' Contribution Pressure Response,' Combustion and Flame, Vol. 98, pp. 279-299 https://doi.org/10.1016/0010-2180(94)90242-9
  4. Sohn, C. H., Chung, S. H., Kim, J. S. and Williams, F. A., 1996, 'Acoustic response of Droplet Flames to Pressure Oscillations,' AIAA Journal, Vol. 34, pp. 1847-1854 https://doi.org/10.2514/3.13317
  5. Kim, H. J., Sohn, C. H., Chung, S. H., Kim, J. S., 2001, 'Nonlinear Acoustic-Pressure Response of Oxygen Droplet Flames Burning in Gaseous Hydrogen,' KSME International Journal, Vol. 15, pp. 510-521
  6. Kim, H. J., Chung, S. H.and Sohn, C. H. , 'Nonlinear Acoustic Responses of $H_2/Air$ Counterflow Diffusion Flames,' submitted to Transactions of KSME
  7. Sychev, V. V., 1987, Thermodynamic Properties of Oxygen, Hemisphere Publishing Corporation
  8. Smooke, M. D., 1982, 'Solution of Burner Stabilized Premixd Laminar Flames by Boundary Value methods,' Journal of Computational Physics, vol. 48, pp. 72-105 https://doi.org/10.1016/0021-9991(82)90036-5
  9. Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, 'CHEMKIN-Ⅱ:A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,' Sandia National Laboratories Report, SAND89-8009
  10. Kee, R. J., Warnatz, J. and Miller, J. A., 1983, ' A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients,' Sandia National Laboratories Report, SAND83-8209
  11. Maas, U. and Warnatz, J., 1988, ' Ignition Processes in Hydrogen-Oxygen Mixtures,' Combustion and Flame, Vol. 74, pp. 53-69 https://doi.org/10.1016/0010-2180(88)90086-7
  12. Rayleigh, J. W. S., 1945, The Theory of Sound, vol. II, Dover
  13. Clavin, P., Kim, J. S. and Williams, F. A., 1994, ' Turbulence-Induced Noise Effects on High Frequency Combustion Instabilities,' Combustion Science and Technology, Vol. 96, pp. 61-84 https://doi.org/10.1080/00102209408935347
  14. Guo, H., Ju, Y., Maruta, K., Niioka, T. and Liu, F., 1997, 'Radiation Extinction Limit of Counterflow Premixed Lean Methane-Air Flames,' Combustion and Flame, Vol. 109, pp. 639-646 https://doi.org/10.1016/S0010-2180(97)00050-3