• Title/Summary/Keyword: Hydrogen/Liquid Oxygen Flame

Search Result 11, Processing Time 0.023 seconds

Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures (초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

Nonlinear Acoustic-Pressure Responses of Oxygen Droplet Flames Burning in Gaseous Hydrogen

  • Chung, Suk-Ho;Kim, Hong-Jip;Sohn, Chae-Hoon;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.510-521
    • /
    • 2001
  • A nonlinear acoustic instability of subcritical liquid-oxygen droplet flames burning in gaseous hydrogen environment are investigated numerically. Emphases are focused on the effects of finite-rate kinetics by employing a detailed hydrogen-oxygen chemistry and of the phase change of liquid oxygen. Results show that if nonlinear harmonic pressure oscillations are imposed, larger flame responses occur during the period that the pressure passes its temporal minimum, at which point flames are closer to extinction condition. Consequently, the flame response function, normalized during one cycle of pressure oscillation, increases nonlinearly with the amplitude of pressure perturbation. This nonlinear response behavior can be explained as a possible mechanism to produce the threshold phenomena for acoustic instability, often observed during rocket-engine tests.

  • PDF

Flamelet Analysis for Transient Response to Pressure Oscillations (압력섭동에 따른 비정상 화염편 응답특성 해석)

  • Bae, Jun-Kyung;Kim, Yong-Mo;Kim, Seong-Ku
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • This study has been mainly motivated to numerically investigate the transient flame response to pressure oscillations in the gaseous hydrogen - liquid oxygen flames at supercritical pressures. The present analysis is based on the real-fluid transient flamlet model and the flame field is acoustically perturbed only by the sinewave oscillations in the frequency range from 1,000 Hz to 5,000 Hz. Based on numerical results, the detailed discussions are made for the flame response characteristics and the transient flamelet response associated with the high-frequency combustion instability in the liquid propellant rocket engines.

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Analysis of Gaseous Hydrogen/liquid Oxygen Combustion Processes at Supercritical State (초임계 압력에서 기체수소/액체산소의 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.189-194
    • /
    • 2010
  • This study has been mainly motivated to numerically model the transcritical mixing and reacting flow processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-$\varepsilon$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state model. In order to realistically represent the turbulence-chemistry interaction in the turbulent non-premixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of the transcritical cryogenic liquid nitrogen jet and gaseous hydrogen/liquid oxygen coaxial jet flame.

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant (평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.333-342
    • /
    • 2016
  • Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

An investigation of autoignition characteristics of kerosene by decomposed hydrogen peroxide (분해된 과산화수소를 이용한 케로신의 자연점화특성 조사)

  • Jo, Sung-Kwon;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.397-400
    • /
    • 2008
  • Traditional propellants which have a hypergolic characteristic have a high performance but also have disadvantages of toxicity and complex handling requirement. In order to replace these propellants, one of the alternatives is hydrogen peroxide which generates high temperature oxygen and water vapor after catalytic reaction. In this paper, autoignition characteristics of kerosene by decomposed hydrogen peroxide were investigated to perform fundamental research for designing a thruster using hydrogen peroxide and kerosene propellants. Contraction ratio, whether flame holder exists or not, and feeding pressure of propellants were selected as variables. From the experiments for different mixture ratio, we confirmed the ignition stability is strongly affected by a feeding pressure of propellants.

  • PDF

An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure (초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2013
  • Turbulent flow and thermal fields of gaseous hydrogen/liquid oxygen flames at supercritical pressure are investigated by turbulence models. The modified Soave-Redlich-Kwong (SRK) EOS is implemented into the flamelet model to realize real-fluid combustions. For supercritical fluid flows, the modified pressure-velocity-density coupling are introduced. Based on the algorithm, the relative performance of six convection schemes and the predictions of four turbulence models are compared. The selected turbulence models are needed to be modified to consider various characteristics of real-fluid combustions.

The Characteristics of Line Heating Using Hydrox Gas (수산소 혼합가스를 이용한 선상가열 특성)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.407-411
    • /
    • 2011
  • The technology of line heating has evolved in various methods. Among them, fossil fuels like ethylene gas and LPG(Liquid Petroleum Gas) are widely used due to their simple utility. In the meantime, the technology implementing high frequency for line heating has also been developed continually, but its manufacturing technology or application includes lots of problems by now. One of the main characteristics of line heating using conventional technolob'Y is the quenching effect followed by heating process. On the other hand, hydrox gas which is mixed by hydrogen and oxygen is a prominent candidate for an application without above shortcomings. Especially, it is found that line heating using hydrox gas is tremendously effective taking low cost as well as low noise. In this paper, a small cell with high efficiency which can minimize installing space is developed to deal with the problem installing in narrow place. Experiments to prove the validation, efficiency and effectiveness is carried out by characterizing in the line heating of steel. It is found that the energy saving of using hydrox gas for line heating is significant and that the deviation performance is reduced by 78~89%. Furthermore, the noise is also reduced as amount of 18.3% though the heating time is not too different.

Electrodelss Plasma Torch Powered by Microwave and Its Applications (무전극 마이크로웨이브 플라즈마 토치와 응용)

  • Hong, Yong-Cheol;Jun, Hyung-Won;Lho, Tai-Hyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.889-892
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Lastly, we briefly report an underway research, which is remediation of soils contaminated with oils, volatile organic compounds, heavy metals, etc.

  • PDF