• Title/Summary/Keyword: 음향파 불안정성

Search Result 4, Processing Time 0.015 seconds

A Numerical Study on Sensitivity of Acoustic Response to Pressure Oscillations in Liquid Rocket Engine (압력진동에 대한 액체 로켓엔진의 음향 응답의 민감도에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.79-87
    • /
    • 2002
  • Acoustic responses to pressure oscillations in axisymmetric combustion chamber are numerically investigated to examine the qualitative trend of acoustic instability in liquid rocket engine. Chamber operating condition and excitation frequency of oscillating pressure are selected as exciting parameters of acoustic instability. Artificial perturbation is simulated by total-pressure oscillation with sine wave at chamber inlet. Many approximations and simplifications are introduced without losing the essence of acoustic pressure response. First, steady-state solution for each operating condition is obtained and next, transient analysis is conducted. Depending on operating condition and excitation frequency, the distinct response characteristics are brought. Weak-strength flames and high-frequency excitation tend to cause sensitive acoustic pressure response leading to unstable pressure field. These results are analyzed based on the correlation with acoustic pressure responses from the previous works adopting laminar flamelet model.

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

Buzz Characteristic of Supersonic Propulsion System with Spray Injection and Combustion (액적 분사/연소를 고려한 초음속 엔진의 buzz 특성)

  • Kim, Seong-Jin;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.411-414
    • /
    • 2010
  • In supersonic propulsion system, the inlet buzz phenomenon in the subcritical operation arises large pressure oscillation, combustion instability, and thrust loss, etc. Inlet Buzz phenomenon and the spray injection/combustion are figured out by the unified unsteady numerical analysis. TAB(Taylor Analogy Breakup) model was applied. Acoustic mode of the entire engine was investigated by detail analysis of pressure fluctuation at each location of the engine.

  • PDF