DOI QR코드

DOI QR Code

MOCVD of GaN Films on Si Substrates Using a New Single Precursor

  • Song, Seon-Mi (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Sun-Sook (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yu, Seung-Ho (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Chung, Taek-Mo (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Chang-Gyoun (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Soon-Bo (Department of Chemistry, School of Molecular Science-BK21, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University) ;
  • Kim, Yun-Soo (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2003.07.20

Abstract

Hexagonal GaN (h-GaN) films have been grown on Si(111) substrates by metal organic chemical vapor deposition using the azidodiethylgallium methylamine adduct, Et₂Ga(N₃)·NH₂Me, as a new single precursor. Deposition was carried out in the substrate temperature range 385-650 °C. The GaN films obtained were stoichiometric and did not contain any appreciable amounts of carbon impurities. It was also found that the GaN films deposited on Si(111) had the [0001] preferred orientation. The photoluminescence spectrum of a GaN film showed a band edge emission peak characteristic of h-GaN at 378 nm.

Keywords

References

  1. Nakamura, S.; Fasol, G. The Blue Laser Diode; Springer-Verlag:Berlin, Heidelberg, Germany, 1997; pp 24-25.
  2. Davis, R. F.; Sitar, Z.; Williams, B. E.; Kong, H. S.; Kim, H. J.;Palmour, J. W.; Edmond, J. A.; Ryu, J.; Glass, J. T.; Carter, C. H.,Jr. Mater. Sci. Eng. B 1988, 1, 77-104. https://doi.org/10.1016/0921-5107(88)90032-3
  3. Karpinsky, J.; Jun, J.; Porowsky, A. J. Cryst. Growth 1984, 66, 1-10. https://doi.org/10.1016/0022-0248(84)90070-8
  4. Strite, S.; Morkoç, H. J. Vac. Sci. Technol. B 1992, 10, 1237-1266. https://doi.org/10.1116/1.585897
  5. Chu, T. L. J. Electrochem. Soc. 1971, 118, 1200-1203. https://doi.org/10.1149/1.2408280
  6. Zhang, H.; Ye, Z.; Zhao, B. phys. stat. sol. (a) 2000, 177, 485-493. https://doi.org/10.1002/(SICI)1521-396X(200002)177:2<485::AID-PSSA485>3.0.CO;2-7
  7. Barfels, T.; Fitting, H.-J.; Jansons, J.; Tale, I.; Veispals, A.; vonCzarnowski, A.; Wulff, H. Appl. Surf. Sci. 2001, 179, 191-195. https://doi.org/10.1016/S0169-4332(01)00278-1
  8. Kim, M.-H.; Bang, Y.-C.; Park, N.-M.; Choi, C.-J.; Seong, T.-Y.;Park, S.-J. Appl. Phys. Lett. 2001, 78, 2858-2860. https://doi.org/10.1063/1.1371539
  9. Andrews, J. E.; Littlejohn, M. A. J. Electrochem. Soc. 1975, 122,1273-1275. https://doi.org/10.1149/1.2134442
  10. Kouvetakis, J.; Beach, D. B. Chem. Mater. 1989, 1, 476-478. https://doi.org/10.1021/cm00004a017
  11. Atwood, D. A.; Jones, R. A.; Cowley, A. H.; Atwood, J. L.; Bott,S. G. J. Organomet. Chem. 1990, 394, C6-C8. https://doi.org/10.1016/0022-328X(90)87270-N
  12. Neumayer, D. A.; Cowley, A. H.; Decken, A.; Jones, R. A.;Lakhotia, V.; Ekerdt, J. G. J. Am. Chem. Soc. 1995, 117, 5893-5894. https://doi.org/10.1021/ja00126a046
  13. Lakhotia, V.; Neumayer, D. A.; Cowley, A. H.; Jones, R. A.;Ekerdt, J. G. Chem. Mater. 1995, 7, 546-552. https://doi.org/10.1021/cm00051a016
  14. McMurran, J.; Kouvetakis, J.; Nesting, D. C.; Smith, D. J.;Hubbard, J. L. J. Am. Chem. Soc. 1998, 120, 5233-5237. https://doi.org/10.1021/ja980404f
  15. McMurran, J.; Kouvetakis, J.; Smith, D. J. Appl. Phys. Lett. 1999,74, 883-885. https://doi.org/10.1063/1.123398
  16. Park, H. S.; Waezsada, S. D.; Cowley, A. H.; Roesky, H. W. Chem.Mater. 1998, 10, 2251-2257. https://doi.org/10.1021/cm980188+
  17. Boo, J.-H.; Lee, S.-B.; Kim, Y.-S.; Park, J. T.; Yu, K.-S.; Kim, Y.phys. stat. sol. (a) 1999, 176, 711-717. https://doi.org/10.1002/(SICI)1521-396X(199911)176:1<711::AID-PSSA711>3.0.CO;2-Y
  18. Devi, A.; Rogge, W.; Wohlfart, A.; Hipler, F.; Becker, H. W.;Fischer, R. A. Chem. Vap. Deposition 2000, 6, 245-252. https://doi.org/10.1002/1521-3862(200010)6:5<245::AID-CVDE245>3.0.CO;2-1
  19. Lee, J. H.; Yoo, S. H.; Lee, Y. K.; Kim, C. G.; Yang, Y. S.; Kim,Y.; Jeon, H. J. Korean Phys. Soc. 2001, 39, S242-S245.
  20. Sung, M. M.; Kim, C.; Yoo, S. H.; Kim, C. G.; Kim, Y. Chem.Vap. Deposition 2002, 8, 50-52. https://doi.org/10.1002/1521-3862(20020304)8:2<50::AID-CVDE50>3.0.CO;2-2
  21. Cowley, A. H.; Jones, R. A. Angew. Chem. Int. Ed. Engl. 1989, 28,1208-1215. https://doi.org/10.1002/anie.198912081
  22. Detchprohm, T.; Amano, H.; Hiramatsu, K.; Akasaki, I. J. Cryst.Growth 1993, 128, 384-390. https://doi.org/10.1016/0022-0248(93)90353-X

Cited by

  1. Crystallinity Studies of GaN/Si Films Grown by MOCVD at Various Substrate Temperatures Using XRD vol.517, pp.1662-9752, 2006, https://doi.org/10.4028/www.scientific.net/MSF.517.69
  2. Precursor Chemistry for Main Group Elements in Semiconducting Materials vol.110, pp.7, 2003, https://doi.org/10.1021/cr900406f