DOI QR코드

DOI QR Code

The Formation of Magnetite Nanoparticle in Ordered System of the Soybean Lecithin

  • Li, Tiefu (Department of Pharmacy, Shenyang Pharmaceutical University) ;
  • Deng, Yingjie (Department of Pharmacy, Shenyang Pharmaceutical University) ;
  • Song, Xiaoping (Institute of Metals Research, Chinese Academia of Science) ;
  • Jin, Zhixiong (Institute of Metals Research, Chinese Academia of Science) ;
  • Zhang, Ying (Department of Pharmacy, Shenyang Pharmaceutical University)
  • Published : 2003.07.20

Abstract

A method of preparation of magnetite nanoparticles in ordered systems, as in vesicle and microemulsion, consisting of soybean lecithin and water has been introduced. The size of magnetite grain was controlled by the content of soybean lecithin and size of liposomes in the systems. It was found by experiment that magnetite nanoparticles were formed inside the double layer vesicles. The magnetite nanoparticles were separated by magnetic separation and centrifugation and the dispersion of the magnetite nanoparticles prepared at 10% (w/w) soybean lecithin was particularly stable. The formation of pure magnetite nanoparticles was confirmed by analyses of XRD and electron diffraction pattern.

Keywords

References

  1. Hayashi, C. Phys. Today 1987, 40, 44. https://doi.org/10.1063/1.881093
  2. Gleiter, H. Prog. Mater. Sci. 1989, 33, 223. https://doi.org/10.1016/0079-6425(89)90001-7
  3. Karch, H.; Birringer, R.; Gleiter, H. Nature 1987, 330, 556. https://doi.org/10.1038/330556a0
  4. Fendler, J. H. Chem. Rev. 1987, 87, 887.
  5. Liu, C.; Rondinone, A. J.; Zhang, Z. J. Pure Appl. Chem. 2000,72(1-2), 37. https://doi.org/10.1351/pac200072010037
  6. Bonnemain, B. J. of Drug Targeting 1998, 6(3), 167. https://doi.org/10.3109/10611869808997890
  7. Pulfer, S. K.; Gallo, J. M. J. of Drug Targeting 1998, 6(3), 215. https://doi.org/10.3109/10611869808997896
  8. Illum, L.; Church, A. E.; Butterworth, M. D.; Arien, A.; Whetstone,J.; Davis, S. S. Pharmaceutical Research 2001, 18(5), 640. https://doi.org/10.1023/A:1011081210142
  9. Denizot, B.; Tanguy, G.; Hindre, F.; Rump, E.; Jacques, J.; Jeune,L.; Jallet, P. J. Colloid Interface Sci. 1999, 209, 66. https://doi.org/10.1006/jcis.1998.5850
  10. Mann, S.; Hannington, J. P. J. Colloid Interface Sci. 1988, 122(2), 326. https://doi.org/10.1016/0021-9797(88)90368-2
  11. Butterworth, M. D.; Illum, L.; Davis, S. S. Collids & Surfaces:Physiochemical & Engineering Aspects 2001, 179(1), 93. https://doi.org/10.1016/S0927-7757(00)00633-6
  12. Bhandarkar, S.; Bose, A. J. Colloid Interface Sci. 1990, 135(2), 531. https://doi.org/10.1016/0021-9797(90)90023-H
  13. Lee, J.; Isobe, T.; Senna, M. J. Colloid Interface Sci. 1996, 177, 490. https://doi.org/10.1006/jcis.1996.0062
  14. Denizot, B.; Tanguy, G.; Hindre, F. et al. J. Colloid Interface Sci.1999, 209, 66. https://doi.org/10.1006/jcis.1998.5850
  15. Klug, H. P.; Alexander, L. E. X-Ray Diffraction Procedures forPolycrystalline and Amorphous Materials; Wiley: New York,1967.

Cited by

  1. Mn–ferrite nanoparticles via reverse microemulsions: synthesis and characterization vol.13, pp.7, 2011, https://doi.org/10.1007/s11051-010-0205-y
  2. Preparation and evaluation of Fe3O4-core@Ag-shell nanoeggs for the development of fingerprints vol.56, pp.5, 2013, https://doi.org/10.1007/s11426-012-4764-x
  3. A novel biocompatible antibacterial product: Nanoliposomes loaded with poly(hexamethylene biguanide chloride) vol.32, pp.3, 2017, https://doi.org/10.1177/0883911516675367
  4. ions from aqueous solution pp.1548-0046, 2017, https://doi.org/10.1080/02726351.2017.1305028
  5. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique vol.3, pp.5, 2006, https://doi.org/10.1002/pssc.200563115
  6. Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer vol.30, pp.4, 2003, https://doi.org/10.5012/bkcs.2009.30.4.869