DOI QR코드

DOI QR Code

Estimating the Carrying Capacity of a Coastal Bay for Oyster Culture -II. The Carrying Capacity of Geoie-Hansan Bay-

굴 양식수역의 환경용량 산정 -II. 거제 · 한산만의 환경용량-

  • Park Jong Soo (Marine Environment Management Division, National Fisheries Research ft Development Institute) ;
  • Kim Hyung Chul (Marine Environment Management Division, National Fisheries Research ft Development Institute) ;
  • Choi Woo Jeung (Marine Environment Management Division, National Fisheries Research ft Development Institute) ;
  • Lee Won Chan (Marine Environment Management Division, National Fisheries Research ft Development Institute) ;
  • Kim Dong Myung (Department of Environmental Engineering, Pukyong National University) ;
  • Koo Jun Ho (Marine Environment Management Division, National Fisheries Research ft Development Institute) ;
  • Park Chung Kil (Department of Environmental Engineering, Pukyong National University)
  • 박종수 (국립수산과학원 환경관리과) ;
  • 김형철 (국립수산과학원 환경관리과) ;
  • 최우정 (국립수산과학원 환경관리과) ;
  • 이원찬 (국립수산과학원 환경관리과) ;
  • 김동명 (부경대학교 환경공학과) ;
  • 구준호 (국립수산과학원 환경관리과) ;
  • 박청길 (부경대학교 환경공학과)
  • Published : 2002.07.01

Abstract

A 3D hydrodynamic-ecological coupled model was applied to estimate carrying capacity in Geoje-Hansan Bay where is one of the most important oyster culturing grounds in Korea. We considered the carrying capacity as the difference between food supply to the oysters and food demand, considering monthly difference of the actual growth. The food supply to the system was determined from the results of the model simulation (tidal exchange and chlorophyll $\alpha$) over the culturing period from September to May of the following year. The food demand was estimated from the food concentration (chlorophyll $\alpha$) multiple the filtration rate of oysters that is considered monthly different growth rate of oysters and food concentration. The values of carrying capacity for the system varied from 6.1 ton/ha (minimum carrying capacity) in february to 14.91 ton/ha (maximum carrying capacity) in April of marketable size oysters (>4 g wet-tissue weight) depending on temporal variations in the food supply. The oyster production calculated from present facilities was 9 ton/ha in wet-tissue weight in Geoje-Hansan Bay. This value corresponded to $60\%$ of maximum carrying capacity of the system. The optimal carrying capacity without negatively affecting on oyster production was 5.5 ton/ha when calculated from annual statistic data and 6.1 ton/ha when determined by this study. These results suggest that it must be reduced $32\%$~$39\%$ of oyster facilities in the system.

과밀양식으로 생산성이 저하되고 있는 거제 $\cdot$ 한산만의 안정적이고 지속적인 굴 생산방안을 제시하기 위하여 생태계 모델을 이용하여 먹이 공급량을 추정하였고, 양식 굴의 여수율과 chloro-phyll $\alpha$ 농도로부터 먹이 요구량을 계산하여 양식 수용력을 산정한 결과는 다음과 같다. 수확 크기별 굴의 먹이 요구량은 습중량 4g의 알굴인 경우 1.40~4.82mgC/ind./day (평균 2.49mgC/ind./day), 습중량 7g의 알굴인 경우 1.96-6.77mgC/ind./day (평균 3.50mgC/ind./day) 범위로 나타나 알굴의 습중량이 증가할수록 먹이 요구량도 크게 나타났다. 월별로는 2월이 가장 작았고, 9월이 가장 크게 나타났다. 월별 먹이 공급량을 월별 먹이 요구량으로 나누어 수확 크기별 수용력을 산정한 결과 2월이 평균 6.10 ton/ha로 최저 수용력을 나타내었고, 4월이 14.91 ton/ha로 최대 수용력을 나타내었다. 거제 $\cdot$ 한산만의 알굴 생산량은 9ton/ha로 최대 수용력의 $60\%$ 수준이나 지속적 생산을 위해서는 임계 수용력인 2월의 6.1ton/ha와 통계자료에 의한 최대 생산량 5.5ton/ha를 감안하여 현재 시설량을 $32\%{\~}39\%$ 정도 줄여야 할 것으로 판단되었다.

Keywords

References

  1. Agius, C., V. Jaccarini and D.A. Ritz. 1978. Growth trials Crassostrea gigas and in inshore waters of Malta (Central Mediterranean). Aquaculture, 15, 195-218 https://doi.org/10.1016/0044-8486(78)90031-5
  2. Askew, C.G. 1972. The Growth of oyster, Ostrea edulis and Crassostrea gigas in Ensworth harbor. Aquaculture, 1, 237-259 https://doi.org/10.1016/0044-8486(72)90026-9
  3. Bacher, C., P. Duarte, J.G. Ferreira, M. H$\'{e}$ral and O. Raillard. 1998. Assessment and comparison of the Marennes-Ol$\'{e}$ron Bay (France) and Carlingford Lough (Ireland) carrying capacity with ecosystem models. Aquat. Ecol., 31, 379-394
  4. Bae, P.A. 1998. Biological Study of the Reproductive Ecology on the Pacific Oyster, Crassostrea gigas in the Southern Coast of Korea. Ph. D. thesis, Dongeui University, 131pp. (in Korean)
  5. Bayne, B.L. 1976. Aspects of reproduction in bivalve molluscs. In Estuarine Processes, M.L. Wiley, ed. Academic press, New York, pp. 432-448
  6. Bayne, B.L. and R.M. Warwick (eds). 1998. Feeding and growth of bivalves: Observations and models. J. Exp. Mar. Biol. Ecol., 219, Special Issue, 269pp
  7. Brown, J.R. and E.B. Hartwick. 1988. Influences of temperature, salinity and available food upon suspended culture of the Pacific oyster, Crassostrea gigas. II. Condition index and survival. Aquaculture, 70, 253-267 https://doi.org/10.1016/0044-8486(88)90100-7
  8. Campbell, D.E. and C.R. Newell. 1998. MUSMOD(c), a production model for bottom culture of the blue mussel, Mytilus edulis L. J. Exp. Mar. Biol. Ecol., 219, 171-203 https://doi.org/10.1016/S0022-0981(97)00180-9
  9. Carver, C.E.A. and A.L. Mallet. 1990. Estimating the carrying capacity of a coastal inlet for mussel culture. Aquaculture, 88, 39-53 https://doi.org/10.1016/0044-8486(90)90317-G
  10. Chapelle, A., A. M$\'{e}$nesguen, J.-M. Deslous-Paoli, P. Souchu, N. Mazouni, A. Vaquer and B. Millet. 2000. Modelling nitrogen, primary production and oxygen in a Mediterranean logoon. Impact of oysters farming and inputs from the watershed. Ecol. Modell., 127, 161-181 https://doi.org/10.1016/S0304-3800(99)00206-9
  11. Cho, E.I., C.K. Park and S.M. Lee. 1996. Estimation of carrying capacity in Kamak Bay (II) - Estimation of carrying capacity of oyster culture ground. J. Korean Fish. Soc., 29, 709-715
  12. Choi, W.J., Y.Y. Chun, J.H. Park and Y.C. Park. 1997. The influence of environmental characteristics on the fatness of Pacific oyster, Crassostrea gigas, in Hansan-Koje Bay. 30, 794-803 (in Korean)
  13. Dame, R.F. and T.C. Prins. 1998. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol., 31, 409-421 https://doi.org/10.1023/A:1009997011583
  14. Dowd, M. 1997. On predicting the growth of cultured bivalves. Ecol. Modell., 104, 113-131 https://doi.org/10.1016/S0304-3800(97)00133-6
  15. Errington, P.L. 1934. Vulnerability of bobwhite population to predation. Ecology, 15, 110-127 https://doi.org/10.2307/1932781
  16. Fang, J.G., K.S. Huan, H.L. Sun, Y. Sun, S.L. Zhou, Y.L. Song, Y. Cui, J. Zhao, Q.F. Yang and J. Grant. 1996. Study on carrying capacity of Sungo Bay for the culture of scallop Chlamys farrei. J. Marine Fisheries Research, 17, 18-31 (in Chinese)
  17. Ferreira, J.G., P. Duarte and B. Ball. 1998. Trophic capacity of Carlingford Lough for oyster culture-analysis by ecological modelling. Aquat. Ecol., 31, 361-378
  18. Fr$\'{e}$chette, M. and E. Bourget. 1985. Energy flow between the pelagic and benthic zones: Factors controlling particulate organic matter available to an intertidal mussel bed. Can. J. Fish. Aquat. Sci., 42, 1158-1165 https://doi.org/10.1139/f85-143
  19. Hanson, R.B., M.T. Alvarez-Ossorio, R. Cal, M.J. Campos, M. Roman, G. Santiago, M. Varela and J.A. Yoder. 1986. Plankton response following a spring upwelling event in the Ria de Arosa, Spain. Mar. Ecol. Prog. Ser., 32, 101-113 https://doi.org/10.3354/meps032101
  20. H$\'{e}$ral, M. 1991. Approaches de la capacit$\'{e}$ trophique des $\'{e}$cosyst$\`{e}$ me conchylicoles: Synth$\`{e}$ se bibliographique. ICES Mar. Sci. Symp., 192, 48-62 (in French)
  21. H$\'{e}$ral, M. 1993. Why carrying capacity models are useful tools for management of bivalve molluscs culture. In Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, R.F. Dame, ed. NATO ASI Series, Springer-Verlag, Berlin, pp. 455-477
  22. Incze, L.S. and R.A. Lutz. 1981. Modeling carrying capacities for bivalve molluscs in open, suspended-culture systems. J. World Maricul. Soc., 12, 143-155
  23. Kang, C.K., M.S. Park, P.Y. Lee, W.J. Choi and W.C. Lee. 2000. Seasonal variation in condition, reproductive and biochemical composition of the pacific oyster, Crassostea gigas (THUNBERG), in suspended culture in two coastal bays of Korea. J. Shellfish Res., 19, 771-778
  24. Kim, Y.S. 1980. Efficiency of energy transfer by a population of the farmed Pacific Oyster, Crassostrea gigas in Geoje-Hansan Bay. Bull. Korean Fish. Soc., 13, 179-193
  25. Kobayashi, M., E.E. Hofmann, E.N. Powell, J.M. Klinck and K. Kusaka. 1997. A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture, 149, 285-321 https://doi.org/10.1016/S0044-8486(96)01456-1
  26. Kusuki, Y. 1977. Fundamental studies on the deterioration of oyster growing grounds. II. Organic content of faecal materials. Bull. Jpn. Soc. Sci. Fish., 43, 167-171 (in Japanese) https://doi.org/10.2331/suisan.43.167
  27. Kusuki, Y. 1978. Relationship between quantities of faecal material produced and of the suspended matter removed by the Japanese oyster, Bull. Jpn. Soc. Sci. Fish., 44, 1183-1185 (in Japanese) https://doi.org/10.2331/suisan.44.1183
  28. Lee, B.D., K.K. Kang and Y.J. Kang. 1991. Primary production in the oyster farming bay. Bull. Korean Fish. Soc., 24, 39-51 (in Korean)
  29. Lim, D.B., C.H. Cho and W.S. Kwon. 1975. On the oceanographic conditions of oyster farming area near Chungmu. Bull. Korean Fish. Soc., 8, 61-67 (in Korean)
  30. NFRDI. 1993. Studies on the Development of Polyculture System in the Coastal Waters of Korea. National Fisheries Research and Development Institute, Korea, 201pp. (in Korean)
  31. Park, J.S., H.C. Kim, W.J. Choi, W.C. Lee, D.M. Kim, J.H. Koo and C.K. Park. 2002. Estimating the carrying capacity of a coastal bay for oyster culture. I. Estimating a food supply to oysters using an ecohydrodynamic model in Geoje-Hansan Bay. J. Korean Fish. Soc., 408-416 (in Korean)
  32. Pazos, A.J., G. Rom$\'{a}$n, C.P. Acosta, M. Abad and J.L. S$\'{e}$nchez. 1997. Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. J. Exp. Mar. Biol. Ecol., 211, 169-193 https://doi.org/10.1016/S0022-0981(96)02724-4
  33. Pearl, R. and L.J. Reed. 1920. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Natl. Acad. Sci., 6, 275-288 https://doi.org/10.1073/pnas.6.6.275
  34. Rodhouse, P.G. and C.M. Roden. 1987. Carbon budget for a coastal inlet in relation to intensive cultivation of suspension-feeding bivalve molluscs. Mar. Ecol. Prog. Ser., 36, 225-236 https://doi.org/10.3354/meps036225
  35. Rodhouse, P.G., C.M. Roden, G.M. Burnell, M.P. Hensey, T. McMahon, B. Ottway and T.H. Ryan. 1984. Food resource, gameto-genesis and growth of Mytilus edulis on the shore and in suspended culture: Killary Harbour, Ireland. J. Mar. Biol. Assoc. U. K., 64, 513-529 https://doi.org/10.1017/S0025315400030204
  36. Rose, A.H. and R.M. Nisbet. 1990. Dynamic models of growth and reproduction of the mussel Mytilus edulis L. Funet. Ecol., 4, 777-787 https://doi.org/10.2307/2389444
  37. Rosenberg, R. and L. Loo. 1983. Energy-flow in a Mytilus edulis culture in western Sweden. Aquaculture, 35, 151-161 https://doi.org/10.1016/0044-8486(83)90082-0
  38. Smaal, A.C., T.C. Prins, N. Dankers and B. Ball. 1998. Minimum requirements for modelling bivalve carrying capacity. Aquat. Ecol., 31, 423-428 https://doi.org/10.1023/A:1009947627828
  39. van der Tol, M.W.M. and H. Scholten. 1998. A model analysis on the effect of decreasing nutrient loads on the biomass of benthic suspension feeders in the Oosterschelde ecosystem (SW Netherlands). Aquat. Ecol., 31, 395-408 https://doi.org/10.1023/A:1009956812400
  40. van Haren, R.J.F. and S.A.L.M. Kooijman. 1993. Application of a dynamic energy budget model to Mytilus edulis L. Neth. J. Sea Res., 31, 119-133 https://doi.org/10.1016/0077-7579(93)90002-A
  41. Verhulst, P.F. 1845. Recherches mathematiques sur la loi d'accroissement de la population. Nouv. mem. de I'acad. Roy. des Sci et Belles-Lett de Bruxelles, T., 18, 1-38 (in French)
  42. Wildish, D.J. and D.D. Kristmanson. 1984. Importance to mussels of the benthic boundary layer. Can. J. Fish. Aquat Sci., 41, 1618-1625 https://doi.org/10.1139/f84-200
  43. 경상남도. 1997. 경상남도 특별관리어장 정화사업 기본조사 및 실시설계 용역 최종보고서 (고성만). 406pp
  44. 박성쾌. 신영태. 김정봉. 1988. 수산재해에 따른 양식공제시험사업 설계. 굴 수하식양식을 중심으로. 한국농촌경제연구원 연구보고, 176, 3-27
  45. 유성규. 1979. 천해양식, 새로출판사, pp. 98-104
  46. 유성규. 2000. 천해양식, 구덕인쇄사, pp. 51-140
  47. 堀口文男. 中田喜三浪. 1993. 沿岸生態系モデルの實海域への適用-山口縣西部海域の場合. 資源と環境, 2, 61-92
  48. 楠木豊. 1986. ニ枚貝の適正收容力硏究について. 廣島縣水産試驗場, 指定調査總合助成事業報告書, pp. 1-8
  49. 城久. 1992. 大阪灣. 漁場環境容量, 水産學シリ-ズ, 87, 恒星社厚生閣, 東京, pp. 49-67
  50. 日本水産資源保護協會. 1989. 漁場環境容量策定事業報告書. 制1分冊. 日本水産資源保護協會, 883pp
  51. 平野敏行. 1992. 環境からの槪念. 漁場環境容量, 水産學シリ-ズ, 87, 恒星社厚生閣, 東京, pp. 9-19

Cited by

  1. Evaluation of Simple CO2 Budget with Environmental Monitoring at an Oyster Crassostrea gigas Farm in Goseong Bay, South Coast of Korea in November 2011 vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.1026
  2. 수질관리를 위한 시화호의 환경용량 산정 vol.16, pp.5, 2002, https://doi.org/10.5322/jes.2007.16.5.571
  3. 생태지표를 이용한 거제한산만 굴양식장의 생태학적 수용능력 산정 vol.17, pp.4, 2011, https://doi.org/10.7837/kosomes.2011.17.4.315