• Title/Summary/Keyword: Cross linker

Search Result 92, Processing Time 0.03 seconds

Etiology of Delayed Inflammatory Reaction Induced by Hyaluronic Acid Filler

  • Won Lee;Sabrina Shah-Desai;Nark-Kyoung Rho;Jeongmok Cho
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2024
  • The etiology and pathophysiology of delayed inflammatory reactions caused by hyaluronic acid fillers have not yet been elucidated. Previous studies have suggested that the etiology can be attributed to the hyaluronic acid filler itself, patient's immunological status, infection, and injection technique. Hyaluronic acid fillers are composed of high-molecular weight hyaluronic acids that are chemically cross-linked using substances such as 1,4-butanediol diglycidyl ether (BDDE). The mechanism by which BDDE cross-links the two hyaluronic acid disaccharides is still unclear and it may exist as a fully reacted cross-linker, pendant cross-linker, deactivated cross-linker, and residual cross-linker. The hyaluronic acid filler also contains impurities such as silicone oil and aluminum during the manufacturing process. Impurities can induce a foreign body reaction when the hyaluronic acid filler is injected into the body. Aseptic hyaluronic acid filler injections should be performed while considering the possibility of biofilm formation or delayed inflammatory reaction. Delayed inflammatory reactions tend to occur when patients experience flu-like illnesses; thus, the patient's immunological status plays an important role in delayed inflammatory reactions. Large-bolus hyaluronic acid filler injections can induce foreign body reactions and carry a relatively high risk of granuloma formation.

Thermomechanical Properties and Shape Memory Effect of PET-PEG Copolymers Cross-linked with Pentaerythritol

  • Shim, Yong-Shik;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.328-332
    • /
    • 2006
  • Poly(ethylene terephthalate) (PET) and poly(ethylene glycol) (PEG) copolymers cross-linked with pentaerythritol, a four-way cross-linker, are prepared to compare their mechanical and shape memory properties with the one cross-linked by glycerol. Composition of PEG and pentaerythritol is varied to search for the one with the best mechanical and shape memory properties. The highest shape recovery rate is observed for the copolymer composed of 30 mol% PEG-200 and 2.5 mol% pentaerythritol. Four-way cross-linking by pentaerythritol significantly improves shape recovery rate and retention of high shape recovery rate after repeated use compared to the one cross-linked by glycerol, a three-way cross-linker, and difference and advantage of additional cross-linking point are discussed.

Effects of the Variation of Silyl Hydride-to-Vinyl Ratios in Dental Polyvinylsiloxane Impression Materials (실리콘 폴리머의 비닐그룹에 대한 가교제의 Si-H 비율이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향)

  • Ju, Dong-Hyun;Jeong, Young-Hwa;Song, Ho-Jun;Choi, Chang-Nam;Park, Yeong-Joon
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.150-155
    • /
    • 2009
  • This study examined the effects of the concentration variation of the silyl hydride (Si-H) functional group in polymethylhydrogen siloxane cross-linker and the vinyl-functional group in silicone prepolymer on the physical properties of the dental polyvinylsiloxane impression materials (PVS). When the SiH/Vinyl ratio was 1.6 (Group $\underline{C6}$ containing ${\underline{C}}ross$-linker $\underline{6}$ parts), the setting rate was too slow even though their tensile strength was the highest within the tested groups. When the SiH/Vinyl ratio was 3.2 (Group C12), the setting rate was too fast to allow appropriate working time even though their mechanical properties were good. The C14 group showed rather lower tensile strength compared to the groups having lower cross-linker contents. Notably, too much incorporation of cross-linker, like C16 group, induced delay of the setting, by which the mechanical and manipulation properties were detrimentally affected.

Cross-Linked Starch Microspheres: Effect of Cross-Linking Condition on the Microsphere Characteristics

  • Atyabi, Fatemeh;Manoochehri, Saeed;Moghadam, Shadi H.;Dinarvand, Rassoul
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1179-1186
    • /
    • 2006
  • Cross-linked starch microspheres were prepared using different kinds of cross-linking agents. The influence of several parameters on morphology, size, swelling ratio and drug release rate from these microspheres were evaluated. These parameters included cross-linker type, concentration and the duration of cross-linking reaction. Microspheres cross-linked with glutaraldehyde had smooth surface compared with those prepared with epichlorhydrine or formaldehyde. The particle size increased with increasing the cross-linking time and increasing the drug loading. Swelling ratio of the particles was a function of cross-linker type but not the concentration or time of cross-linking. Drug release from starch microspheres was measured in phosphate buffer and also in phosphate buffer containing a-amylase. Results showed that microspheres cross-linked with epichlorhydrine released all their drug content in the first 30 minutes. However, cross-linking of the starch microspheres with glutaraldehyde or formaldehyde decreased drug release rate. SEM and drug release studies showed that cross-linked starch microspheres were susceptible to the enzymatic degradation under the influence of alpha-amylase. Changing the enzyme concentration from 5000 to 10,000 IU/L, increased drug release rate but higher concentration of enzyme (20,000 IU/L) caused no more acceleration.

Preparation and Swelling Behavior of Cross-Linked Films of Hydroxypropyl Chitosan Possessing Cholesteric Liquid-Crystalline Order (Cholesteric 액정질서를 지닌 Hydroxypropyl Chitosan 가교필름의 제조와 팽윤거동)

  • 마영대;김경희
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.418-430
    • /
    • 2000
  • A new hydroxylpropyl chitosan (HPCTO) capable of forming both thermotropic and lyotropic liquid crystalline phases was synthesized by reaction of alkali chitosan with propylene oxide and its solid films cross-linked with glyoxal were prepared by casting the liquid crystalline solution in methanol. The thermal and swelling properties of the cross-linked films were investigated. The films displayed fingerprint patterns characteristic of cholesteric liquid-crystalline phase, and their pitches increased with increasing temperature and cross-linker concentration. The cross-linked samples exhibited an anisotropic swelling in both water and methanol, suggesting that the two-dimensional cross-linking preferentially performs between HPCTO molecules. The degree of anisotropy highly depended on the solvent, but hardly on the cross-linker concentration investigated.

  • PDF

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker (과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성)

  • Oh, Si-Jin;Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Myong-Hoon;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

Multi-responsive hydrogel cross-linked synthesized spiropyran-based hydrophilic cross-linker (스피로피란 기반 친수성 가교제를 활용한 다중 자극 감응형 하이드로젤)

  • Jeong, Hye-Won;Kim, Sang Jin;Heo, Eun-Jin;Shin, Sung Gyu;Han, Sa Ra;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.126-135
    • /
    • 2021
  • Stimuli-responsive hydrogels are being extensively studied to alter their physiochemical properties in response to external changes such as temperature, pH, light and mechanical stress. This study reports multi-responsive hydrogel having optical change response to external stress. First, we synthesized a novel spiropyran cross-linker successfully by grafting poly(ethylene glycol) diacrylate (PEGDA) on both side of spiropyran and introduced to hydrogel. In the results, the yellow spriopyran structure was conversed to purple merocyaine structure by internal stress during swelling of the hydrogels cross-linked with the SP-PEGDAs. Also, the hydrogel could be visualized the swelling and deswelling process in response to pH, by converting MC and prontonated MC structure.

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF

Fabrication and Characterization of 3-D Porous Collagen Scaffold (3차원 다공성 콜라겐지지체의 제조 및 특성 분석)

  • Kim, Jin-Tae;Lim, Sumin;Kim, Byoung Soo;Lee, Deuk Yong;Choi, Jae Ha
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.192-196
    • /
    • 2014
  • Collagen scaffolds were synthesized by cross linking into a solution mixture of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochlorid(EDC) in ethanol, followed by pressing, cleaning and lyophilization process after the type I atelo-collagen solutions in D.I water(pH3). The experimental conditions are collagen concentration of 1.0 wt%, 3.0 wt%, 5.0 wt% and differential concentration of cross-linker. Then, parametric studies were performed by varying the parameters to investigate the morphology, the porosity, the swelling ratio and the thickness and genotoxicity of the scaffolds. The scaffolds thickness pattern was regular to concentration of the degree of cross-linker and collagen. It was observed that the swelling ratio, the degree of crosslink, and the pore size(thickness of scaffold) can be controlled by adjusting the collagen, crosslinker. Among the parameters investigated, the smallest thickness can be achieved by collagen, crosslinker concentrate condition. The collagen scaffold is induced no genotoxicity. The lowest swelling ratio, as an indication of the highest degree of crosslink, can be obtained by adding crosslink agent.

Solution Structure of an Active Mini-Proinsulin, M2PI: Inter-chain Flexibility is Crucial for Insulin Activity

  • Cho, Yoon-Sang;Chang, Seung-Gu;Choi, Ki-Doo;Shin, Hang-Cheol;Ahn, Byung-Yoon;Kim, Key-Sun
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.120-125
    • /
    • 2000
  • M2PI is an active single chain mini-proinsulin with a 9-residue linker containing the turn-forming sequence 'YPGDV' between the B- and A-chains, but which retains about 50% of native insulin receptor binding activity. The refolding efficiency of M2PI is higher than proinsulin by 20-40% at alkaline pH, and native insulin is generated by the enzymatic conversion of M2PI. The solution structure of M2PI was determined by NMR spectroscopy. The global structure of M2PI is similar to that of native insulin, but the flexible linker between the B- and A-chains perturbed the N-terminal A-chain and C-terminal B-chain. The helix in the N-terminal A-chain is partly perturbed and the ${\beta}$-turn in the B-chain is disrupted in M2PI. However, the linker between the two chains was completely disordered indicating that the designed turn was not formed under the experimental conditions (20% acetic acid). Considering the fact that an insulin analogue, directly cross-linked between the C-terminus of the B-chain and the N-terminus of the A-chain, has negligible binding activity, a flexible linker between the two chains is sufficient to keep binding activity of M2PI, but the perturbed secondary structures are detrimental to receptor binding.

  • PDF