DOI QR코드

DOI QR Code

Effective Installation Methods of Down Conductors in Lightning Protection Systems

뇌보호시스템에서 인하도선의 효과적인 설치기법

  • 이복희 (인하대학교 전자전기공학부) ;
  • 엄주홍 (인하대학교 전자전기공학부) ;
  • 이승칠 (인하대학교 전자전기공학부) ;
  • 강성만 (인하대학교 전자전기공학부)
  • Published : 2002.07.01

Abstract

A modern lightning protection system is required to eliminate the risks such as electrical shocks and damages of structures, electrical and electronic equipments due to lightning. However, the conventional lightning protection systems play and important role in protecting persons and structures only. Thus an effective lightning protection system is indispensable today in computer, information and communication facilities and etc. The mafor objective of this paper is to develop the technology to protect electronics and computerized facilities against lightning-caused overvoltages. The study is oriented on the control of the potential rise of down conductors with the type and installation method of down conductors. As a result, to reduce side flashes and hazards caused by the potential rise of down conductor due to lightning current, the coaxial cable with a low characteristic impedance and high insulation level is suitable for a down conductor. In particular it is extremely effective to bond down conductors to the steel supporter, metal raceways and steel frame of structures.

현대의 뇌보호시스템은 낙뢰로 인한 감전이나 건축물, 전기·전자기기의 파손과 같은 위험성을 제거하는 것이 요구되지만 종래의 뇌보호설비는 단지 인명의 피해나 건축물을 보호하는 것이 주된 역할이었다. 오늘날 컴퓨터, 정보통신설비 등을 효과적으로 보호할 수 있는 뇌보호설비가 필수적 요건으로 대두되었다. 본 논문에서는 뇌과전압으로부터 컴퓨터와 전자장비를 보호할 수 있는 기술을 개발할 목적으로 인하도선의 종류와 설치기법에 따라서 인하도선에 유도되는 전위상승 억제에 대한 연구를 수행하였다. 그 결과 인하도선의 전위상승에 의한 측면방전과 위험성을 줄이기 위해서는 인하도선으로 낮은 특성임피던스를 가지는 동축케이블이 적당하며, 인하도선과 금속관을 상단과 하단에서 본딩하는 방법이 효과가 높게 나타났다.

Keywords

References

  1. S. Taguchi, “Lightning protection in Building”, Railway and Electrical Engineering, Vol.8, No.5, pp.120-122, 1997.
  2. A. Karwowski and A. Zeddam, “Transient currents on lightning protection systems due to the indirect lightning effect”, IEE Proceeding of Science and Measurement Technology, Vol.142, No.3, pp.213-216, 1995. https://doi.org/10.1049/ip-smt:19951837
  3. Institute of Electrical Installation Engineers of Japan, Guidebook on Lightning Protection Systems of Structures, IEIE of Japan, pp.66-77, 1992.
  4. A. Orlandi, C. Mazzetti, M. Yarmarkin, Z. Flisowski, B. Kuca. “Shielding Properties of Lightning Protection Systems under LEMP”, Proceedings of the 10th International Symposium on High Voltage Engineering, Montreal, Quebec, Canada August 25-29, pp.1351-1361, 1997.
  5. Institute of Electrical Installation Engineers of Japan, Ligtning Protection for Information-oriented and Computerized Society, IEIE of Japan, pp.10-52, 1999.
  6. IEEE Standards Board, “IEEE Std 81-1983; IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System”, The Institute of Electrical and Electronics Engineers, Inc., pp.17-30, 1983.
  7. H. Hukushima and K. Horiuchi, Electromagnetics, Corona Publishing Co. LTD., pp.60-79, 1999.
  8. H. Kijima, Grounding and Lightning protection, Institute of Electronics, Information and Communication of Japan, pp.110-138, 1997.
  9. A. Oriandi, F. Schietroma, “Attenuation by a Lightning Protection System of Induced Voltages Due to Direcrt Strikes to Building”, IEEE Trans. on Electromagnetic compatibility, Vol.38, No.1, pp.43-50, 1996. https://doi.org/10.1109/15.485694
  10. R. P. O'Riley, Electrical Grounding, International Thomson Publishing Company, 5th Edition, pp.60-79, 1999.