References
- A. V. Arhangel'skii, The star method, new classes of spaces and countable compactness, Soviet Math. Dokl. 21 (1980), 550-554.
- P. Bacon, The compactness of countably compact spaces, Pacific J. Math. 32 (1970), 587-592. https://doi.org/10.2140/pjm.1970.32.587
- R. L. Blair, Closed-completeness in spaces with weak covering properties, Settheoretic Topology, Academic Press, New York-San Francisco-London, 1977, pp. 17-45.
- R. L. Blair, On a theorem of Chaber Topology Proceedings 5 (1980), 33-46.
- D. K. Burke, Covering Properties, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 349-422.
- J. Cao, On isocompactness of function spaces, Bull. Austral. Math. Soc. 60 (1999), 483-486. https://doi.org/10.1017/S0004972700036649
- J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24 (1976), 993-998.
- M. H. Cho, Isocompactness of weakly star reducible spaces, Q & A in General Topology 14 (1996), 123-129.
- S. W. Davis, A cushioning-type weak covering property, Pacific J. Math. 80 (1979), 359-370. https://doi.org/10.2140/pjm.1979.80.359
-
S. W. Davis, On F
${\tau}$ -spaces, General Topology and Appl. 9 (1978), 131-138. https://doi.org/10.1016/0016-660X(78)90058-2 - J. Dugundji, Topology, Allyn and Bacon, 1966.
- N. Dykes, Generalizations of realcompact spaces, Pacific J. Math. 33 (1970), 571-581. https://doi.org/10.2140/pjm.1970.33.571
- F. W. Eckertson, S. Garcia-Ferreira, M. Sanchis, and S. Watson, An isocompact Tychonoff space whose square is not isocompact, Topology Proceedings 22 (1997),181-190.
- R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- S. Garcia-Ferreira and M. Sanchis, Projection maps and isocompactness (preprint).
- L. Gillman and M. Jerison, Rings of continuous functions, Princeton, 1960.
- J. D. Hansard, Function space topologies, Pacific J. Math. 35 (1970), 381-388. https://doi.org/10.2140/pjm.1970.35.381
- E. Hewitt, Rings of real continuous functions, Trans. Amer. Math. Soc. 64 (1948), 49-99. https://doi.org/10.1090/S0002-9947-1948-0026239-9
- M. Ismail and P. J. Nyikos, On spaces in which countably compact sets are closed, and hereditary properties, Top. Appl. 11 (1980), 281-292. https://doi.org/10.1016/0166-8641(80)90027-9
- M. Ismail and A. Szymanski, Compact spaces representable as unions of nice subspaces, Topology and its Appl. 59 (1994), 287-298. https://doi.org/10.1016/0166-8641(94)90025-6
- I. Juhasz, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf space, Canad. J. Math. 28 (1976), 998-1005. https://doi.org/10.4153/CJM-1976-098-8
- M. V. Matveev, A survey on star covering properties, Topology Atlas Preprint #330, 1998.
- R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ. 13, Amer. Math. Soc. Providence, R.I., 1962.
- S. Nedev, Symmetrizable spaces and final compactness, Soviet Math. Dokl. 8 (1967), 890-892.
- G. M. Reed, The intersection topology with respect to the real line and the countable ordinals, Trans. Amer. Math. Soc. 297 (1986), 509-520. https://doi.org/10.2307/2000536
- M. Sakai, On CL-isocompactness and weak Borel completeness, Tsukuba J. Math. 8 (1984), 377-382. https://doi.org/10.21099/tkbjm/1496160049
- M. Sakai, A new class of isocompact spaces and related results, Pacific J. Math. 122 (1986), 211-22l. https://doi.org/10.2140/pjm.1986.122.211
- R. M. Stephenson Jr., Initially K-compact and related spaces, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 603-632.
- J. E. Vaughan, Countably compact and sequentially compact spaces, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 569-602.
- J. M. Worrell, Jr and H. H. Wicke, A covering property which implies isocompactness I, Proc. Amer. Math. Soc. 79 (1979), 331-334. https://doi.org/10.1090/S0002-9939-1980-0565365-6
- H. H. Wicke and J. M. Worrell, Jr, A covering property which implies isocompactness II, Topology Proceedings 4 (1979), 213-224.
- H. H. Wicke and J. M. Worrell, Jr, Characterizations of paracompactness and subparacompactness using star reducibility, Proc. Amer. Math. Soc. 111 (1991), 1119-1127. https://doi.org/10.1090/S0002-9939-1991-1054164-4
- H. H. Wicke, Not all realcompact spaces are ultrapure, Topology and its Appl. 91 (1999), 87-90. https://doi.org/10.1016/S0166-8641(97)00246-0