충북미원지역에서 산출하는 마카라이트의 변질양상 및 광물화학

Alteration Textures and Mineral Chemistry of Margarite from Miwon Area, Chungcheongbukdo

  • 이승준 (충북대학교 지구환경과학과) ;
  • 안중호 (충북대학교 지구환경과학과) ;
  • 김현철 (한국기초과학연구원 동위원소분석팀) ;
  • 조문섭 (서울대학교 지구환경과학부)
  • 발행 : 2002.03.01

초록

충청북도 미원지역의 운교리층내에 산출하는 마가라이트(margarite)를 편광현미경, 후방산란전자영상(BSEI), 그리고 전자현미분석기(EPMA)를 이용하여 변질양상 및 광물화학에 관하여 조사하였다. 편광현미경과 후방산란전자영상의 관찰에 의하면 대부분의 마가라이트는 순수한 단결정으로 구성되어 있지 않고 부분적으로 녹니석이 마카라이트 결정의 테두리 부근에 평행한 경계를 이루며 존재한다. 또한, 마가라이트를 가로질러 생긴 파쇄면을 따라서 녹니석이 교대하고 있기도 하며, 녹니석과 마가라이트가 교대로 충을 이루는 조직을 보여준다. 일부 마가라이트와 녹니석 결정내 에는 미세한 흑운모와 백운모가 흔히 협재되어 있다. 이러한 광물조직은 마가라이트가 녹니석뿐만 아니라 흑운모와 백운모로도 변질되었음을 지시한다. 화학분석 결과 마가라이트는 파라고나이트 성분을 19.6 mol% 정도 함유하나, 클린토나이트 성분은 극히 적거나 무시할 수 있을 정도의 양만이 존재한다. 운교리층에서 발견되는 마가라이트는 같은 시료내의 다른 변성기원 광물들을 관입하고 암석에 분포하는 흑운모의 엽리방향과는 무관하게 산출하는데, 이러한 조직관계는 마가라이트가 최고변성작용 이후에 생성된 이차광물임을 지시한다. 특히 주변에 대규모 화강암 관입암체가 분포하는 점은 이러한 관입암체에 기인한 열수용액이 마가라이트의 생성과 밀접한 연관이 있을 가능성을 사사한다.

Margarite, which occurs in the Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using the petrographic microscope, back-scattered electron images (BSEI), and electron probe microanalyzer (EPMA) to characterize the alteration textures and mineral chemistries. Most margarite crystals are inhomogeneous, and chlorite was commonly observed to occur at the boundaries parallel to the rim of margarite. Cracks occur across the basal plane of the margarite, and margarite is partly replaced by chlorite along the cracks. In additon, muscovite and biotite are intergrown in margarite and chlorite crystals, suggesting that margarite was partially altered to chlorite as well as to muscovite and biotite. Chemical analysis data show that paragonite solid solution in the margarite is approximately 19.6 mol%, but clintonite solid solution is negligible. Margarite crystals in the Unkyori Formation cut or penetrate other metamorphic minerals In the same thin sections and are oriented randomly without any relationship with the foliation of host rocks, indicating that formed as a secondary mineral after peak metamorphism. Furthermore, it seems that hydrothermal fluids associated with the Mesozoic intrusions developed near the sample are closely related to the margarite formation.

키워드

참고문헌

  1. Ackennand, D. and Morteani, G. (1973) Occurrences and breakdown of paragonite and margarite in the Greiner Schiefer Series (Zillerthal Alps, Tyrol). Contrib. Mineral. and Petrol., 40, 293-304.
  2. Baltatzis, E. and Katagas, C. (1981) Margarite pseudomorphs after kyanite in Glen Esk, Scotland. Amer. Miner., 60, 265-272.
  3. Berman, R.G. (1990) Mixing properties of Ca-MgFe-Mn garnets. Amer. Mineral., 75, 328-344.
  4. Bucher, K., Frank, E. and Frey, M. (1983) A model for the progressive regional metamorphism of margarite-bearing rocks in the central Alps. Amer. Jour. Sci., 283A, 370-395.
  5. Chinner, G.A. (1974) Dalradian margarite: A preliminary note. Geol. Mag., III, 699-709.
  6. Cluzel, D., Jolivet, L., and Cadet, J.P. (1991) Early Middle Paleozoic intraplate orogeny in the Ogcheon Belt (South Korea), a new insight on the Paleozoic buildup of East Asia. Tectonics, 10,1130-1151.
  7. Cooper, A.F. (1980) Retrograde alteration of chromian kyanite in metachert and amphibolite whiteschist from the Southern Alps, New Zealand, with implications for uplift on the Alpine Fault. Contrib. Mineral. Petrol., 75, 153-164.
  8. Deer, W.A., Howie, R.A., and Zussman, J. (1962) Rock-Forming Minerals, vol. 3: Sheet Silicates. 270p. Longman, London.
  9. Enami, M., (1980) Note on petrography and rockforming mineralogy (8): Margarite-bearing metagabbro from the Iratsu mass in the Sanbagawa Belt, Central Shikoku. Jour. Jap. Asso. Mineral. Petrol. Eco. Geol., 75, 245-253.
  10. Frank, E. (1983) Alpine metamorphism of calcareous rocks along a cross-section in the Central Alps: occurrence and breakdown of muscovite, margarite and paragonite. Schw. Mineral. Petro. Mitt., 63, 39-93.
  11. Ferry, J.M. and Spear, F.S. (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib. Mineral. Petrol., 66, 113-117.
  12. Frey, M. (1978) Progressive low-grade metamorphism of a black shale formation, Central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. Jour. Petrol., 19, 95-135.
  13. Frey, M. and Orville, P.M. (1974) Plagioclase in margarite-bearing rocks. Amer. Jour. Sci., 274, 32-47.
  14. Frey, M. Bucher, K., Frank, E., and Schwander, H. (1982) Margarite in the central Alps. Schw. Mineral. Petro. Mitt., 62, 21-45.
  15. Gibson, G.M. (1979) Margarite in kyanite and corundum-bearing anorthosite, amphibolite and hornblendite from Central Fiordland, New Zealand. Contrib. Mineral. Petrol., 68, 171-179.
  16. Grew, E.S., Hinthorne, J.R., and Marquez, N. (1986) Li, Be, Band Sr in margarite and paragonite from Antarctica. Amer. Mineral., 71, 1129-1134.
  17. Guggenheim, S. (1984) The brittle micas. In : Bailey, S. W. (ed.), Reviews in Mineralogy 13. Micas. Washington, D.C. Mineralogical Society of America, 61-104.
  18. Guggenheim, S. and Bailey, S.W. (1975) Refinement of the margarite in subgroup symmetry. Amer. Mineral., 60, 1023-1029.
  19. Guggenheim, S. and Bailey, S.W. (1978) Refinement of the margarite in subgroup symmetry: correction, further refinement, and comments. Amer. Mineral., 63, 186-187.
  20. Guidotti, C.V. (1984) Micas in metamorphic rocks. In: Bailey, S. W. (ed.), Reviews in Mineralogy 13. Micas. Washington, D.C. Mineralogical Society of America, 357-467.
  21. Guidotti, C.V. and Cheney, J.T. (1976) Margarite pseudomorphs after chiastolite in the Rangeley area, Maine. Amer. Mineral., 61, 431-434.
  22. Guidotti, C.V., Post, J.L., and Cheney, J.T. (1979) Margarite pseudomorphs after chiastolite in the Georgetown area, California. Amer. Mineral., 64, 728-732.
  23. Hock, V. (1974) Coexisting phengite, paragonite and margarite in metasediments of the Mittlere Hohe Tauern, Austria. Contrib. Mineral. Petrol., 43, 261-273.
  24. Hoinkes, G. (1978) Zur Mineralchemie und Metamorphose toniger und mergeliger Zwischenlagen in Marmoren des sudwestlichen Schneebergerzuges (Otztaler Alpen, Sudtirol), Neues Fahrb. Mineral., Abh., 131, 272-303.
  25. Hoisch, T.D. (1989) A muscovite-biotite geothermometer. Amer. Mineral., 67, 1118-1134.
  26. Hoisch, T.D. (1990) Experimental calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib. Mineral. Petrol., 104, 225-234.
  27. Kim, H. and Cho, M. (1999) Polymetamorphism of Ogcheon supergroup in the Miwon area, central Ogcheon metamorphic belt, South Korea. Geosciences Journal, 3, 151-162.
  28. Kim, H., Cho, M., and Koh, H.-J. (1995) Tectonometamorphic evolution of the central Ogcheon belt in the Jeungpyeong-Deokpyeong area. Jour. Geol. Soc. Korea, 31, 299-314.
  29. Kretz, R. (1983) Symbols for rock-forming minerals. Amer. Mineral., 68, 277-279.
  30. Morand. V.J. ( 1988) Vanadium-bearing margarite from the Lachlan Fold Belt, New South Wales, Australia. Mineral. Mag., 52, 341-345.
  31. Reed, S.J.B. (1996) Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press. 201p.
  32. Rieder, M., Cavazzini, G., D'yakonov, Y.S., FrankKamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval'. P.V., Mtiller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z., and Wones, D.R., (1998) Nomenclature of the micas. Clays Clay Min., 46,586-595.
  33. Stahle, V., Frenzel, G., and Mertz, D.F. (1986) Retrograde metamorphism in anorthositic layers from Finero (Ivrea zone). Schw. Mineral. Petro. Mitt.,66,73-98.
  34. Takeuchi, Y. (1965) Structures of brittle micas. Clays Clay Min., 13, 1-25.
  35. Teale, G.S. (1979) Margarite from the Diary Province of South Australia. Min. Mag., 43, 433-435.
  36. Yardley, B.W.D., and Baltatzis, E. (1985) Retrogression of staurolite schists and the sources of infiltration fluids during metamorphism. Contrib. Mineral. Petrol., 89, 59-68.