• Title/Summary/Keyword: zoom level

Search Result 29, Processing Time 0.022 seconds

Implementation of Precise Level Measurement Device using Zoom FFT (Zoom FFT를 이용한 정밀 레벨 측정 장치의 구현)

  • Ji, Suk-Joon;Lee, John-Tark
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.504-511
    • /
    • 2012
  • In this paper, level instrument is implemented using beat frequency for distance measurement which means the difference between Tx and Rx signal frequency from FMCW Radar Level Transmitter. Beat frequency is analyzed through Fast Fourier Transform of which frequency precision can be improved by applying Zoom FFT. Distance precision is improved from 146.5[mm] to 5[mm] using the advantage of Zoom FFT which can raise the frequency precision without changing the sampling frequency or FFT point number to be fixed in the beginning of designing signal processing. Also, measurement error can be reduced within 2[mm] by incresing the FFT points using the method of Spline interpolation. For verifying the effectiveness of this Zoom FFT to FMCW Radar Level Transmitter, test bench is made to measure the distance for every 1[mm] between 700[mm] and 2000[mm] and measurement error can be checked in the range of ${\pm}2$[mm].

A Beamforming-Based Video-Zoom Driven Audio-Zoom Algorithm for Portable Digital Imaging Devices

  • Park, Nam In;Kim, Seon Man;Kim, Hong Kook;Kim, Myeong Bo;Kim, Sang Ryong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • A video-zoom driven audio-zoom algorithm is proposed to provide audio zooming effects according to the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone array in conjunction with a soft masking process that uses the phase differences between microphones. The audio-zoom processed signal is obtained by multiplying the audio gain derived from the video-zoom level by the masked signal. The proposed algorithm is then implemented on a portable digital imaging device with a clock speed of 600 MHz after different levels of optimization, such as algorithmic level, C-code and memory optimization. As a result, the processing time of the proposed audio-zoom algorithm occupies 14.6% or less of the clock speed of the device. The performance evaluation conducted in a semi-anechoic chamber shows that the signals from the front direction can be amplified by approximately 10 dB compared to the other directions.

  • PDF

Design and Performance Analysis of Zoom-FFT Based FMCW Radar Level Meter (Zoom-FFT 기반 FMCW 레이더 레벨미터의 설계 및 성능분석)

  • Sanjeewa, Nuwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2014
  • This paper presents design of a FMCW (Frequency Modulated Continuous Wave) level meter as well as simulation result of the designed system. The system is designed to measure maximum range of 20m since FMCW radar can be used for measuring short range distance. The distance is measured by analyzing the beat signal which is generated as result of mixing transmitting signal with the reflected received signal. The Fast Fourier Transform is applied to analyze the beat signal for calculating the displacement and Zoom FFT technique is used to minimize measurement error as well as increase the resolution of the measurement. The resolution of the measurement of the designed system in this paper is 2.2mm and bandwidth of 1.024GHz is used for simulation. Thus the simulation results are analyzed and compared in various conditions in order to get a comprehensive idea of frequency resolution and displacement resolution.

An Empirical Study on Factors Affecting Immersion and Learning Outcomes in Real-time Non-face-to-face Classes using Zoom (Zoom을 이용한 실시간 비대면 수업에서 몰입과 학습성과에 미치는 요인에 관한 실증연구)

  • Kim, Na Rang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.129-141
    • /
    • 2022
  • The purpose of this study is to reveal the variables that affect learning immersion, in real-time non-face-to-face classes. To this end, a survey was conducted from November 22, 2021 to December 5, 2021 for students with experience in zoom classes. Excluding incorrect questionnaire, 117 copies were analyzed using a structural equation model. The results show that 'interest' and 'interaction level' influenced 'learning immersion', and 'learning immersion' had a positive effect on 'learning outcome'. The contribution of this study is that it empirically analyzed variables affecting learning immersion in real-time non-face-to-face classes. In the follow-up study, it is necessary to verify variables that affect learning immersion in various platforms, including zoom.

A Study on the Precise Distance Measurement for Radar Level Transmitter of FMCW Type using Correlation Anaysis Method (상관분석법을 이용한 FMCW 타입 레이더 레벨 트랜스미터의 정밀 거리 측정에 관한 연구)

  • Ji, Suk-Joon;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1024-1031
    • /
    • 2012
  • In this paper, FMCW type radar level transmitter using correlation analysis method is implemented for precise distance measurement of cargo tank. FMCW type radar level transmitter is the device for distance measurement which calculates the distance by analyzing the beat frequency, that is, the frequency difference between Tx and RX signal from radar antenna using Fast Fourier Transform(FFT), but compensated algorithm like Zoom FFT is needed for the improvement of the frequency precision because the frequency precision of FFT is limited depending on sampling frequency and the number of sampling data. In case of Zoom FFT, the number of sampling data and noisy signal are the main factor influencing the measurement accuracy of Zoom FFT like FFT. Therefore, in order to overcome the limited environment and achieve the precise measurement, correlation coefficient is used for the distance measurement and the errors of measurement are verified to be in the range of ${\pm}1mm$.

Performance Evaluation and Design of Zoom Lens Systems (Zoom Lens계의 성능 평가 및 설계)

  • Ji, Taek Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Nowadays, developed camera, camcorder, CCTV and copier system accept a wide angle and a telephoto lens, and have an excellent capacity. Also, it is small as using aspheric surface. In this paper, after we evaluate and analyze two-group zoom lens system and three-group zoom lens system for camera, we refer to it, and design three-group zoom lens system for camera. Therefore, when we design a zoom lens system for camera, we use a symmetrical system. As using an aspheric surface, we can try to a miniaturization and an efficient improvement. We use optical valuable measure methods, a ray intercept plot, MTF and Seidel coefficient. So, we can confirm to have a similar level to compare with reference model.

  • PDF

Generalization by LoD and Coordinate Transformation in On-the-demand Web Mapping (웹환경에서 LoD와 좌표변형에 의한 지도일반화)

  • Kim, Nam-Shin
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.2
    • /
    • pp.307-315
    • /
    • 2009
  • The purpose of map generalization is a method of map making to transmit the concise cartographic representation and geographic meaning. New generalization algorithm has been developed to be applied in the digital environments by the development of computer cartography. This study aims to look into possibilities of the multiscale mapping by generalization in application with the coordinate transformation and LoD(level of detail) in the web cartography. A method of the coordinate transformation is to improve a transmission of spatial data. Lod is a method which is making web map with selection spatial data by zoom level of users. Layers for test constructed contour line, stream network, the name of a place, a summit of mountain, and administrative office. The generalization was applied to zoom levels by scale for the linear and polygonal features using XML-Based scalable vector graphics(SVG). Resultantly, storage capacity of data was minimized 41% from 9.76mb to 4.08mb in SVG. Generalization of LoD was applied to map elements by stages of the zoom level. In the first stages of zoom level, the main name of places and administrative office, higher order of stream channels, main summit of mountain was represented, and become increase numbers of map elements in the higher levels. Results of this study can help to improve esthetic map and data minimization in web cartography, and also need to make an efforts to research an algorithm on the map generalization over the web.

  • PDF

Comparison of a Learner's Experience on Zoom and Spatial (줌과 스페이셜의 학습자 경험 비교 평가)

  • Yejin Lee;Kwang-Tae Jung
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.535-541
    • /
    • 2022
  • Zoom has been most popularly used as a non-face-to-face online class tool since COVID19, but due to the recent spread of the metaverse, the use of the metaverse platform is increasing. In particular, since a metaverse platform 'Spatial' provides online classroom creation and various learning functions, and various interactions between instructors and learners or learners and learners are possible, it is highly likely to be used in university classes. Since Zoom and Spatial each have their own strengths and weaknesses for the purpose of class use, it is necessary to find out the strengths and weaknesses of each by comparing and analyzing the learner's experience in class use. In this study, a quantitative analysis of usability, immersion, and satisfaction and a qualitative analysis of individual opinions were performed in order to compare and analyze the learner's experience. SUS (System Usability Scale) was used for usability evaluation, and Magnitude Estimation method was used for immersion and satisfaction evaluation. Thirty-five people who had participated in classes using Zoom and Spatial participated as subjects in this study. Zoom was higher than Spatial at the significance level of 0.05 in usability and satisfaction. On the other hand, the immersion in class was higher in Spatial than in Zoom. Since Spatial provides online classroom creation and various learning functions, and provides various interactions and fun elements between instructors and learners or learners and learners, the immersion in classes was high. If the user interface and interaction of Spatial are improved in the future, it is judged that it can be used as an effective online teaching tool that can replace zoom in university classes.

Correction method for the Variation of the Image Plane Generated by Various Symmetric Error Factors of Zoom Lenses of Digital Still Cameras and Estimation of Defect Rate Due to the Correction (디지털 카메라용 줌렌즈에서 대칭성 오차요인에 의한 상면 변화의 보정과 이에 따른 불량률 예측)

  • Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin;Lee, Hyuck-Ki;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.420-429
    • /
    • 2006
  • In the zoom lens of digital still cameras with the variation of the image plane generated by various symmetric error factors such as curvature, thickness and refractive index error of each lens surface about the optic axis, we induce a theoretical condition to fix constantly the image plane by translating the compensator group of the zoom lens by using the Gaussian bracket. We confirm the validity of this condition by using three examples of general zoom lens types with 3, 4, and 5 groups, respectively. When these error factors are randomly changed within the range of tolerance according to the Monte Carlo method, we verify that the distributions of the degree of moving of the compensator are normal distributions at three zoom lens types. From capability analysis using these results, we theoretically propose the method estimating the standard deviation, that is, sigma-level, as a function of the maximum movement of the compensator.

Facial Expression Control of 3D Avatar by Hierarchical Visualization of Motion Data (모션 데이터의 계층적 가시화에 의한 3차원 아바타의 표정 제어)

  • Kim, Sung-Ho;Jung, Moon-Ryul
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.277-284
    • /
    • 2004
  • This paper presents a facial expression control method of 3D avatar that enables the user to select a sequence of facial frames from the facial expression space, whose level of details the user can select hierarchically. Our system creates the facial expression spare from about 2,400 captured facial frames. But because there are too many facial expressions to select from, the user faces difficulty in navigating the space. So, we visualize the space hierarchically. To partition the space into a hierarchy of subspaces, we use fuzzy clustering. In the beginning, the system creates about 11 clusters from the space of 2,400 facial expressions. The cluster centers are displayed on 2D screen and are used as candidate key frames for key frame animation. When the user zooms in (zoom is discrete), it means that the user wants to see mort details. So, the system creates more clusters for the new level of zoom-in. Every time the level of zoom-in increases, the system doubles the number of clusters. The user selects new key frames along the navigation path of the previous level. At the maximum zoom-in, the user completes facial expression control specification. At the maximum, the user can go back to previous level by zooming out, and update the navigation path. We let users use the system to control facial expression of 3D avatar, and evaluate the system based on the results.