• Title/Summary/Keyword: zirconia-toughened alumina

Search Result 9, Processing Time 0.026 seconds

Synthesis and Characterization of Al2O3/ZrO2, Al2O3/TiO2 and Al2O3/ZrO2/TiO2 Ceramic Composite Particles Prepared by Ultrasonic Spray Pyrolysis

  • Shim, In-Soo;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1127-1134
    • /
    • 2002
  • Fine ceramic particles of zirconia toughened alumina (ZTA), titania toughened alumina (TTA), and zirconia-titania toughened alumina (ZTTA) have been synthesized by ultrasonic spray pyrolysis (USP) at various temperatures from starting salt solutio ns of various compositions aiming for the development of catalytic material. These particles were characterized for properties such as shape, size and size distribution, diffraction pattern, and chemical and phase composition of elements by scanning electron microscopy (SEM), particle size analyzer (PSA), x-ray diffraction (XRD), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Chemical compositions and sizes of ceramic composites have been controled by the stoichiometry of salt solutions and the flow rate of spraying solutions. The optimum experimental conditions for the various composite particle syntheses have been proposed.

The Effect of Zirconia Particle Size on Mechanical Properties of Zirconia Toughened Alumina (ZrO2의 분말크기가 ZTA의 기계적 물성에 미치는 영향)

  • Sohn, Jeongho;Shin, Hyung-Sup
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.652-657
    • /
    • 2014
  • The purpose of this study was to investigate the microstructures and mechanical properties of zirconia toughened alumina (ZTA) ceramics prepared from two kinds of 3Y-TZP powders. ZTA composites were prepared by adding two kinds of 3Y-TZP powders, 3YEH (BET = $7m^2/g$) and 3YEM (BET = $16m^2/g$), to ${\alpha}$-alumina in the range of 5-25 wt%. It was found that the microstructure photographs of the ZTA composites showed that the average grain size of alumina decreased as the content of zirconia increased. In our present study, specimens containing 3YEM zirconia exhibited smaller grain sizes compared to those of 3YEH zirconia. The Vickers hardness of the ZTA composites that were sintered at $1600^{\circ}C$ for 2 hrs was found to smoothly decrease with increasing zirconia content because of the low Young modulus in zirconia. The Vickers hardness of the ZTA containing 3YEH zirconia was greater than that of the 3YEM zirconia. In substance, the fracture toughness ($K_{1c}$) of the ZTA composites increased as the content of zirconia increased. The fracture toughness ($K_{1c}$) of ZTA containing 3YEM zirconia was greater than that of 3YEH zirconia.

Process Study on Alumina-zirconia Nanocomposite via Ammonolysis Route

  • Naoya Enomoto;Tang, Jun-Mu;Masato Uehara;Hideaki Maeda;Junichi Hojo;Nakagawa, Zenbe-e
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.143-150
    • /
    • 2000
  • Wet-chemical process using ammonia to precipitate aluminum ion dissolved in a zirconia sol solution is examined. Formation of crystalline bayerite is unfavorable for fine dispersion of zirconia nanoparticles in alumina matrix after heat treatment. To avoid the bayerite formation, it was preferred to make a precipitation with a diluted ammonia or with an ammonia gas flow at high temperature. By optimizing the precipitation process and the calcination temperature, we successfully prepared the uniform microstructure in which tetragonal zirconia particles of ∼30nm is finely dispersed within the alumina grains.

  • PDF

Densification and Thermo-Mechanical Properties of Al2O3-ZrO2(Y2O3) Composites

  • Kim, Hee-Seung;Seo, Mi-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.515-518
    • /
    • 2006
  • The microstructure of $ZrO_2$ toughened $Al_2O_3$ ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. $Al_2O_3-ZrO_2(Y_2O_3)$ composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

The Effect of Seeding on Preparation of $ZrO_2/Al_2O_3$ Composite by Sol-Gel Method (Sol-Gel법에 의한 $ZrO_2/Al_2O_3$ 복합체의 제조에 미치느 Seeding 효과)

  • 김선욱;주치홍;장윤식;손영국;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.571-577
    • /
    • 1993
  • The effect of $\alpha$-Al2O3 seeding on preparation of zirconia/alumina gel fragment prepared by sol-gel processing was characterized through XRD, SEM, TG/DTA and IR analysis. Aluminum isopropoxide and zirconium butoxide were used as starting materials. $\alpha$-Al2O3 seeding restrained grain growth of alumina and zirconia, and decreased tetragonal to monoclinic phase transformation of zirconia on cooling. Therefore, fine zirconia-toughened alumina composite having the relative sintered density of about 98% of theoretical at 140$0^{\circ}C$ for 2h could be obtained.

  • PDF

Effects of Particle Size of Alumina on Densification Behavior in ZTA (ZTA 제조시 알루미나 입자크기가 치밀화 거동에 미치는 영향)

  • Chae, Jihoon;Cho, Bumrae
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.250-254
    • /
    • 2013
  • In order to increase the toughness of ZTA(zirconia toughened alumina) ceramics, the present study focused on rearrangement and densification of particles according to the particle size of the parent material. When rough alumina was used for production of ZTA, densification behavior was observed in the specimen sintered at a temperature over $1550^{\circ}C$. However, it was found that the densification behavior was occurred in the specimen sintered at $1450^{\circ}C$ when fine alumina powder was used. High relative density exceeding 98% was obtained when fine alumina powder was mixed with 15 wt% of 3Y-TZP and sintered at $1600^{\circ}C$. Also, a hardness of 1820.2 Hv was obtained when a specimen containing 10 wt% of 3Y-TZP was sintered at $1600^{\circ}C$. In the case of 3Y-TZP containing rough alumina powder that had been sintered the hardness value was around 1720.3 Hv. It was predicted that an improved toughening effect in ZTA could be achieved by using finer alumina powder as the parent material.

Optimization of powder compaction parameters for the pressureless sintered ZTA (상압소결 ZTA의 분말 성형 공정 최적화)

  • 신동우;김경도;박삼식;임창성;이수완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.356-364
    • /
    • 1998
  • The dependence of green and sintered densities of Zirconia-Toughened Alumina ($ZTA:\;Al_2O_3/\;15\;vol{%}\;ZrO_2$) on the properties of spray-dried granules was studied thoroughly to establish the optimum compaction condition leading to high reproducibility in the light of sintered density. The sphericity, mean size, degree of hollow occurrence and moisture content of spray-dried granules were largely different in between the granule containing binder and the ones with no binder. The effect of these differences in the characteristic of granules on the compaction behavior was examined in terms of the compaction pressure from 80 MPa to 120 MPa 10 MPa increment and the compaction method, i.e., uniaxial and cold isostatic pressing. This work confirmed that the reproducibility of sintered density caused by the variation of granule property could be improved by the optimization of compaction process. The variation of sintered density was controlled within 1 % deviation by compacting the granules under a relatively low pressure of 80 MPa in an uniaxial forming and subsequent cold isostatic pressing at high pressure of 500 MPa.

  • PDF

Effect of Yield Strength and Morphology of Spray-dried $Al_2O_3/15v/o ZrO_2$ Granules on the Compaction Behaviour

  • Shin, Dong-Woo;Yoon, Dae-Hyun;Lim, Chang-Sung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.13-17
    • /
    • 1997
  • The densification of $Al_2$O$_3$/15v/o ZrO$_2$ (Zirconia Toughened Alumina: ZTA) to the 99% of theoretical density was attempted by controlling the processing parameters affecting the each processing step i.e., milling, spray-drying, forming and pressureless sintering. The ZTA processed under the identical conditions showed a large variation in the green and sintered densities, and the mechanical properties. The deviation of 4-point bending strength was more than 100MPa for the ZTA with ~99% of theoretical density. Moreover, the relative green and sintered densities were deviated greatly from the average value. This low reproducibility could be caused by the variation of spray-dried granule properties. Thus, the effect of yield strength and morphology of spray-dried ZTA granule on the green and sintered densities and the mechanical properties needs to be studied in detail. The objective of this work is to fine out the optimum condition of compaction pressure and compaction method depending on the properties of spray-dried granules.

  • PDF

Enhancement of Cu Wire Bondability by Increasing the Surface Roughness of Capillary (표면 요철이 발달된 캐필러리 적용에 따른 Cu 와이어의 본딩 특성)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Kang, Hong-Jeon;Kim, Hak-Bum;Moon, Jung-Tak;Riu, Doh-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.913-920
    • /
    • 2012
  • In spite of some problems in processability and bondability, Au wires in the microelectronics industry are gradually being replaced by copper wires to reduce the cost of raw material. In this article, the effects of surface roughness enhanced capillaries on thermosonic Cu wire bonding were evaluated. The roughness-enhanced zirconia toughened alumina (ZTA) capillaries were fabricated via a thermal grooving technique. As a result, the shear bond strength of first bonds (ball bonds) bonded using the roughness-enhanced capillary was enhanced by 15% as compared with that of normal bonds due to more effective plastic deformation and flow of a Cu ball. In the pull-out test of second bonds (stitch bonds), processed at two limit conditions on combinations of process parameters, the bond strength of bonds formed using the roughness-enhanced capillary also resulted in values higher by 55.5% than that of normal bonds because of the increase in the bonding area, indicating the expansion of a processing window for Cu wire bonding. These results suggest that the adoption of roughness-enhanced capillaries is a promising approach for enhancing processability and bondability in Cu wire bonding.