• Title/Summary/Keyword: zirconia ceramic

Search Result 624, Processing Time 0.026 seconds

Shear bond strength analysis of PFM metal and zirconia with different surface condition (PFM metal과 zirconia의 표면상태에 따른 전단결합강도 분석)

  • Jung, Jae-Kwan;Kim, Kyung-Ah;Lee, Su-Ok;Kim, Ki-Baek;Kim, Jae-Hong;Kim, Il-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4329-4335
    • /
    • 2014
  • This study examined the effects of the shear bond strength when the surface condition of the metal and zirconia, each being the lower structures, was different when determining the bond strength (metal group) of the metal lower structure with upper ceramics, and the shear bond strength (zirconia group) of zirconia lower structure with the upper ceramics in prosthetic appliances of metal-ceramic crown and zirconia-ceramic crowns. The metal groups were divided into a total of four groups: the group with no condition on the metal surface(NM), the group with sand-blasting(SM), the group with applied opaque ceramics(OM), and the group with applied opaque ceramics and sand-blasting(SOM). The zirconia groups were also separated into four groups: the group with no condition(NZ), the group with sand-blasting(SZ), the group treated with ZirLiner on the zirconia surface(LZ), and the group applied with ZirLiner along and sand-blasting(SLZ). To examine the effects on the shear bond strength according to the surface condition of each of the four metal and zirconia groups, SPSS was used to conduct one-way ANOVA. For metal-ceramic crowns, it would be best to apply opaque ceramics after sand-blasting on the surface of the metal, the lower structure. For zirconia-ceramic crowns, it is recommended to apply the ZirLiner after sand-blasting on the surface of zirconia, the lower structure.

Effect of Particle Size on Zirconia Gel-Casting Process

  • Kim, In-Woong;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.449-454
    • /
    • 2015
  • The fabrication process of zirconia gel-casting was studied to obtain dense zirconia on a large scale or with complicated shapes. As an experimental parameter, two different particle sizes ($0.1{\mu}m$ and $0.7{\mu}m$) of zirconia powder were applied to the gel-casting process. The viscosity behavior of slurries incorporating 40 vol% of zirconia powder was examined as a function of the dispersant content and the solid load to determine the optimum dispersion conditions. In addition, the gelation time with an initiator, the de-binding behavior, and the main factors affecting densification were examined. The densification of the gel-casted zirconia green body depended on the mixing ratio between the monomer and the dimer and on the zirconia particle size. A green body with a small particle size of $0.1{\mu}m$ showed less densification, with a relative density of 93%. This may be due to the excess number of bubbles created through interactions between the larger particle surface and polymer additives during the ball-milling process.

Continuous Processing of Monodispersed Zirconia Powders (초음파 혼합 연속공정에 의한 단분산 지르코니아 분체의 합성)

  • Rhee, Jhun;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.919-925
    • /
    • 1992
  • Continuous synthesis process for monodispersed zirconia powders with ultrasonic wave mixing was developed. Reactant solutions were flowed through a T-tube with small diameter and then mixed in a microscale with ultrasonification. Reaction and aging were followed during the mixed solution of reactants is in plug flowing through a narrow long teflon tubing. Zr(n-OC4H9)4 in ethanol and H2O in ethanol were used as reactants. From this process monodispersed, spherical, non-agglomerated, singlet hydrated zirconia powders with 0.6 $\mu\textrm{m}$ average size were obtained. Geometrical standard deviation of the particle size distribution was less than 1.2 with ultrasonic mixing, and the geometrical standard deviation was not affected by the flow rate of the reactants.

  • PDF

Synthesis of Monodispersed Zirconia Powder by Hydrolysis of Zirconium Alkoxides (알콕사이드의 가수분해법에 의한 단분산 지르코니아 분체의 합성)

  • Rhee Jhun;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.167-175
    • /
    • 1991
  • In synthesizing hydrated zirconia powder by hydrolysis of Zr-alkoxides using ethanol as mutual solvent, three experimental parameters, namely, concentration of alkoxides and hydrolysis water and addition rate of hydrolysis water were varied systematically. Spherical, monodispersed, nonagglomerated and submicrometer sized powders were prepared at 0.3 M of Zr(n-OPr)4 and 0.05M of Zr(n-OBu)4 with wide ranges of hydrolysis water conditions i.e. 0.5-2.0M concentration and 1-20ml/min addition rate. During the hydrolsis, careful attention have to be paid to maintain homogeneous reaction by controlling the agitation of the reactant and the addition of the hydrolysis water. For more improved condition of monodispersity it was found that the key point is to shorten the self-nucleation time within several seconds as rapid as possible. In both alkoxides system, with higher concentration of alkoxide and hydrolysis water and with slow addition rate of hydrolysis water, hydrated zirconia powders synthesized showed tendency to fall in worse powder conditions.

  • PDF

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan;Choi, Eui-Seok;Hayakawa, Motozo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.718-721
    • /
    • 2005
  • The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

Effect of HPC Dispersant on Synthesis of Monodispersed Hydrated Zirconia Powder by Hydrolysis of Zr-n-butoxide (Zr(n-OC$_4$H$_9$)$_4$의 가수분해에 의한 선분산 지르코니아 분체의 합성에서 분산제 HPC의 첨가효과)

  • Rhee, Jhun;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.611-618
    • /
    • 1991
  • In the present study adding hydroxypropyl celluose as dispersant to the ethanol solution of Zr-butoxide prior to starting the hydrolysis reaction, spherical and submicrometer sized hydrated zirconia powders were synthesized successfully. But syntesized hydrated zirconia powders were soluble considerably in ethanol used as washing medium. Washing once the powder with plenty amount of water after washing thrice it with acetone, reaction mother solution remained between the particles was effectively removed and the particles were converted to insoluble state to ethanol at the same time. As a result of such washing processes it was able to prevent the formation of polydispersed, agglomerated and multiplet particles almost always even when such concentrated solutions of Zr-n-butoxide as 0.5 M were hydrolyzed.

  • PDF

Abnormal Grain Growth Mechanism of Calcium Hexaluminate Phase

  • Song, Jun-Ho;Jo, Young-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.525-526
    • /
    • 2006
  • Calcium-hexaluminate phase $(CA_6)$ is known to be effective for the crack shielding due to the spinel block crystal structure. In this study, we focused to the control of $CA_6$ morphology for good damage tolerance behavior in alumina and zirconia/calcium-hexaluminate $(CA_6)$ composites. Calcium-hexaluminate $(CA_6)$ composites were prepared from zirconia, alumina and calcium carbornate powders. Calcium-hexaluminate $(CA_6)$ phase was obtained by the solid reaction through the formation of intermediate phase $(CA_2)$. $CA_6$ phase showed the column type abnormal grain grown behavior composed of small blocks. Due to the typical microstructure of $CA_6$, alumina and zirconia/calcium-hexaluminate composites provide a well controlled crack propagation behavior.

  • PDF

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

Densification Behaviour and Strengthening of Mullite/Ziroconia Composite with Addition of $ZrO_2$ or $ZrSiO_4$ ($ZrO_2$$ZrSiO_4$ 첨가에 따른 Mullite/Zirconia 복합체의 치밀화 거동 및 강도 증진)

  • 김인섭;이승석;박주석;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1080-1086
    • /
    • 1999
  • Mullite/zirconia composite was synthesized by adding zirconia and Zircon to mixture of Hapcheon kaolin(grade pink A) and aluminium nitrate salt in order to enhance strength of the mullite specimens. Kaolin and aluminium nitrate salt was mixed milled and calcined at 100$0^{\circ}C$ and then 5wt% mullite seed was added to increase mullite content. The influence of the additives(ZrO2 and ZrSiO4) and sintering temperature on the strength of the sintered specimens was investigated. The flexural strength of the specimens containing 10wt% zirconia was enhanced from 150MPa without the additive up to 300MPa after heat treatment at 156$0^{\circ}C$ In the case of addition of 15wt% zircon the strength of the specimens systhesized at 1$600^{\circ}C$ was 225 MPa.

  • PDF

A Study on the Hydroxyapatite-Zirconia Composite Bioceramics (Hydroxyapatite Zirconia 계 복합 Bioceramics에 관한 연구)

  • 이종필;최현국;송종택;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.289-296
    • /
    • 1991
  • Hydroxyapatite (HAp)-zirconia bioceramics, which have excellent biocompatibility with tissue of bone and tooth and good mechanical properties, were synthesized, and their properties and biocompatibility were investigated. HAp powders were synthesized with Ca/P=1.67 and pH 11 by precipitation method. A fine spherical monodispersed ZrO2 powders were prepared by metal alkoxide method, and then they were partially stabilized with 10 mol% CaO by solid state reaction at 1300℃. HAp-zirconia composites were prepared by sintering of these HAp mixed with various amount CaO-partially stabillized zirconia (PSZ). When HAp containing 15 wt% PSZ with 10 mol% CaO (PSZ(10C)) were sintered at 1250℃, it was prevented to decompose into TCP and ZrO2 was uniformly dispersed at HAp matrix. Mechanical strength of these sintered bodies were increased by addition of 15 wt% PSZ(10C), the bending strength of compacts fired at 1250℃ was 165 MPa. HAp-PSZ composites chemically bonded each other in Ringer's solution and the component of bonded layer was HAp. These composites did not prevent cell-growing and exhibit any cytotoxic effects.

  • PDF