• Title/Summary/Keyword: zirconate

Search Result 178, Processing Time 0.019 seconds

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings

  • Kim, Sun-Joo;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.652-658
    • /
    • 2016
  • Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.

Phase Formation and Thermo-physical Properties of GdO1.5-ZrO2 System for Thermal Barrier Coating Application (열차폐코팅용 GdO1.5-ZrO2계 희토류 지르코네이트 세라믹스의 상형성과 열물리 특성)

  • Kim, Sun-Joo;Lee, Won-Jun;Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Im, Dae-Soon;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.554-559
    • /
    • 2014
  • Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most promising candidates for replacing yttira-stabilized zirconia (YSZ) in thermal barrier coating (TBC) applications due to its low thermal conductivity and chemical stability at high temperature. In this study, rare-earth zirconate ceramics in the $GdO_{1.5}-ZrO_2$ system with reduced gadolinia contents were fabricated via solid-state reaction as well as hot-pressing at $1800^{\circ}C$. The phase formation, microstructure, and thermo-physical properties of these oxides were examined. The potential application of $GdO_{1.5}-ZrO_2$ ceramics for TBC was also discussed.

Aging Effect on Charge Sensitivity and Frequency Response of PZT Ceramics (PZT 세라믹스의 전하감도와 주파수 응답특성에 대한 경시변화 효과)

  • 신병철;임종인;윤만순;박병학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.588-590
    • /
    • 1989
  • Charge sensitivity and its frequency response characteristics were measured in poled and aged lead zirconate titanate(PZT) ceramics prepared by sintering. Aged PZT has lower charge sensitivity and lower mounted resonance frequency than just poled PZT.

  • PDF

Preparation of PZT-Ceramics by Coprecipitation Method (공침법에 의한 PZT-Ceramics의 제조)

  • 안영필;최석홍;이병우
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.168-172
    • /
    • 1988
  • In order to prevent the PbO vaporization during calcination and to produce the powder of good sinterability, a coprecipitation method for preparing homogeneous Lead-Zirconate-Titanate (PZT) powder from aqueous salt solution is described. In this method, the PZT-ceramics show low calcining and sintering temperature, and they have good sintering and electronic properties.

  • PDF

A Study of Preparation of Antiferroelectric PbZrO3 Thin Films by Sol-Gel Processing (Sol-gel법에 의한 반강유전성 PbZrO3 박막 제작에 관한 연구)

  • Jeon, Kie-Beom;Bae, Se-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1998
  • The purpose of this study, when one prepared lead zirconate thin films by sol-gel method, was to find the preferred direction of crystal growth and dielectric characteristics for ratio of Pb and Zr. We used the Pt/Ti/$SiO_2$/Si substrate, and annealing condition was $800^{\circ}C$ for lminute. When Pb was deficient, preferred direction was <221>. And when it was stoichiometric ratio, they were grown <200> and <221> direction. But they have antiferroelectric properties, they don't appear distinct domain switching.

  • PDF

Fabrication of 1 ㎛ Thickness Lead Zirconium Titanate Films Using Poly(N-vinylpyrrolidone) Added Sol-gel Method

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Yoon, Seok-Jin;Nahm, Sahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.222-225
    • /
    • 2011
  • Lead zirconate titanate (PZT) films were fabricated on Pt/Ti/$SiO_2$/Si substrate by the sol-gel method using a sol containing poly(N-vinylpyrrolidone) (PVP). PVP in alkoxide solutions can suppress the condensation reaction in gel films during heat treatment, and increase the viscosity of alkoxide solutions. Single-phase PZT films as thick as 1 ${\mu}m$ were deposited by repetitive coating with successive third-step heat treatments at 150$^{\circ}C$, 350$^{\circ}C$ and 650$^{\circ}C$. After heat treatment, the films were crack free, and optically transparent. As a result, we demonstrated a PZT film with a PVP molar ratio of 0.5, which has a permittivity of 734, a dielectric loss of 0.042, a $P_r$ of 40.5 ${\mu}C/cm^2$ and an $E_c$ of 156 kV/cm.

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.