• Title/Summary/Keyword: zircon sand

Search Result 24, Processing Time 0.022 seconds

Studies on the Mineralogical Characteristics of Apple Orchard Soils (사과원토양(園土壤)의 광물학적특성(鑛物學的特性)에 관(關)한 연구(硏究))

  • Lee, Mahn Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.141-152
    • /
    • 1973
  • The mineralogical studies of the eleven sub-soil samples derived from granite, granodiorite, diorite and arkose sandstone, taken from apple orchards in the province of Kyungsangbukdo, Korea are made to investigate the relationships between the mineral weathering, soil forming processes and mineralogical composition. The fine sand fraction (less than 0.2mm) and the clay fraction (less than 2 micron) are dispersed with the shaker after hydrogen peroxide treatment for the removal of organic matter, and separated from each suspension by gravity sedimentation. The fine sand are observed by mineral microscope and the clay are observed by X-ray diffraction patterns, differential thermal analysis curves and infrared spectrum. The outline of the results are as follows. 1. The primary minerals ; Quartz, changed-feldspar, plagioclase, alkali-feldspar are dominant in almost all samples, and some samples contain an appreciable amount of hornblende, biotite, muscovite and plant opal. There are also those samples which contain very small quantity of pyroxene group, tourmaline, epidote, cyanite, magnetite, volcanic glass and zircon. They are mainly derived from weathering products of granite, granodiorite, diorite, arkose or its mixtures. 2. All samples contain expanding or nonexpanding $14{\AA}$ minerals, illite and kaolin minerals, and some samples contain chlorite, cristobalite, gibbsite, and those primary minerals as quartz and feldspar, but the quantities vary according to the parent matrials. 3. Non-expanding $14{\AA}$ minerals may be dioctahadral vermiculite which sandwiches gibbsite layer or chlorite in between layer lattices. 4. As for clay minerals, montmorillonite was principal component in the samples derived from weathering products of arkose sandstone and tertiary. Minerals which are derived from weathering products of arkose have kaolin minerals and vermiculite as their principal component, and minerals derived from weathering products of acidic rock group are generally classified into two groups, the kaolin mineral group, and the kaolin minerals and vermiculite group.

  • PDF

Characteristics and Provenance of Heavy Minerals in the Yellow Sea and Northern East China Sea (황해 및 동중국해 북부의 중광물 특성과 기원)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.505-515
    • /
    • 2020
  • The Yellow Sea and northern East China Sea contain a transgressive sand layer. Numerous sedimentary studies have been carried out in these sand deposits using seismic exploration and core sediment techniques, but few mineralogical studies have been reported. The major purposes of this study are to describe the distributions of heavy minerals throughout the Yellow sea and northern East China Sea and to identify the provenance of coarse sediments using the mineral chemistry. Eight heavy mineral species were identified in the study area (epidote, amphibole, garnet, zircon, sphene, rutile, apatite, and monazite). The study region was divided into six areas (areas A to F) based on heavy mineral distributions and sampling locations. In mineral chemistry, the amphiboles present are classified as edenite and hornblende in the calcic amphibole group, and the garnets are identified primarily as almandine in the pyralspite group. A combined data set of heavy mineral distributions and mineral chemistry showed clear differentiation of the characteristics of the six classified areas, enabling determination of provenance and sedimentary environment. Area A and B in the eastern Yellow Sea were originated from the Korean peninsula, and these regions showed different heavy mineral characteristics by tidal current and coastal current. In addition, monazite was only found in the area B and could be used as an indicator from the southwestern Korean peninsula. Area D and E in the western Yellow Sea showed the characteristics of sediments originating from the Huanghe, and sediment in the area E was derived from the Changjiang. Area C in the northern East China Sea appeared to have Changjiang-origin sediment, and abundant apatite indicated that area C was formed close to the Last Glacial Maximum.

A Study on the Fabrication of Shrinkage-Free Mullite--$ZrO_2$ Ceramics with Al-Additives (Al첨가에 의한 무수축 Mullite-$ZrO_2$ 요업체의 제조에 관한 연구)

  • Kim, Jeong-Uk;Kim, Il-Su
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.888-896
    • /
    • 1995
  • In this paper the manufacture of shrinkage-free in situ Mullite-ZrO$_2$ceramics through the addition of Al base metal powder to the mixture of ZrSiO$_4$and A1$_2$O$_3$was attempt. The ZrO$_2$-strengthened mullite ceramics was prepared after the following reaction form, 3(Al+Al$_2$O$_3$)+2ZrSiO$_4$longrightarrow3A1$_2$O$_3$.2SiO$_2$+2ZrO$_2$Al metal powder was added from none to 30 weight percent to the A1$_2$O$_3$. The powders were mechanically mixed, isostatically pressed and reaction sintered at 1450-1$600^{\circ}C$ for 3hours. The specimens were sintered with and without intrim soaking time for 5 hours at 125$0^{\circ}C$ for the oxidation of Al-powder The addition of aluminium accelerates the reaction and compensate the shrinkage during the sintering through an increase in volume of oxidized Al. Because coarse flake type Al metal powders were not effectively milled, oxidized Al resulted in the relative large pore in the specimen.

  • PDF

The Influence of the Characteristics of Drainage Basin on Depositional Processes of the Alluvial Fan: An Example from the Cretaceous Duwon Formation in Goheung Area (유역분지 특성에 따른 충적선상지의 퇴적작용: 고흥군 백악기 두원층의 예)

  • Lee, Kyung Jin;Park, Seung-Ik;Lee, Hyojong;Gihm, Yong Sik
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.441-456
    • /
    • 2021
  • The Cretaceous Duwon Formation was studied on the basis of sedimentologic analysis in order to unravel geologic conditions for the development of the streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. The Duwon Formation unconformably overlies the Paleoproterozoic gneiss (basement). Based on the sedimentologic analysis, the Duwon Formation is interpreted to have been deposited in gravelly braided stream (FA-1) near the basement, laterally transitional to sandy braided stream (FA-2) and floodplain environments (FA-3) with distance (< 7 km) from the basement. Lateral changes in sedimentary facies and the well development of calcrete nodules in FA-3, together with radial paleocurrent directions measured in FA-1, are suggestive of the deposition of the Duwon Formation in streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. Recent analysis of detrital zircon chronology suggests that sediments of the Duwon Formation were derived from the southwestern part of the Korean peninsula, including the western part of Yeongnam Massif and the southwestern part of Okcheon Belt. This implies the alluvial fan where the Duwon Formation accumulated had the large drainage basin. Because the large drainage basin can supply the significant amounts of water and temporarily store the sediments within the basin, watery floodwater carried sediments to the alluvial fan rather than the debris flows. Furthermore, the drainage basin largely composed of coarse-grained metamorphic and igneous rocks produced sand-grade sediments, preventing evolution of floodwater into debris flows. We suggest that combined effects of the large drainage basin and its coarse-grained metamorphic and igneous rocks provided favorable conditions for the development of streamflow-dominated alluvial fan, despite arid to semi-arid climatic conditions during sedimentation.