DOI QR코드

DOI QR Code

The Influence of the Characteristics of Drainage Basin on Depositional Processes of the Alluvial Fan: An Example from the Cretaceous Duwon Formation in Goheung Area

유역분지 특성에 따른 충적선상지의 퇴적작용: 고흥군 백악기 두원층의 예

  • Lee, Kyung Jin (Department of Geology, Kyungpook National University) ;
  • Park, Seung-Ik (Department of Geology, Kyungpook National University) ;
  • Lee, Hyojong (Marine and Petroleum Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Gihm, Yong Sik (Department of Geology, Kyungpook National University)
  • 이경진 (경북대학교 지질학과) ;
  • 박승익 (경북대학교 지질학과) ;
  • 이효종 (한국지질자원연구원 석유해저연구본부) ;
  • 김용식 (경북대학교 지질학과)
  • Received : 2021.07.24
  • Accepted : 2021.08.24
  • Published : 2021.08.31

Abstract

The Cretaceous Duwon Formation was studied on the basis of sedimentologic analysis in order to unravel geologic conditions for the development of the streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. The Duwon Formation unconformably overlies the Paleoproterozoic gneiss (basement). Based on the sedimentologic analysis, the Duwon Formation is interpreted to have been deposited in gravelly braided stream (FA-1) near the basement, laterally transitional to sandy braided stream (FA-2) and floodplain environments (FA-3) with distance (< 7 km) from the basement. Lateral changes in sedimentary facies and the well development of calcrete nodules in FA-3, together with radial paleocurrent directions measured in FA-1, are suggestive of the deposition of the Duwon Formation in streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. Recent analysis of detrital zircon chronology suggests that sediments of the Duwon Formation were derived from the southwestern part of the Korean peninsula, including the western part of Yeongnam Massif and the southwestern part of Okcheon Belt. This implies the alluvial fan where the Duwon Formation accumulated had the large drainage basin. Because the large drainage basin can supply the significant amounts of water and temporarily store the sediments within the basin, watery floodwater carried sediments to the alluvial fan rather than the debris flows. Furthermore, the drainage basin largely composed of coarse-grained metamorphic and igneous rocks produced sand-grade sediments, preventing evolution of floodwater into debris flows. We suggest that combined effects of the large drainage basin and its coarse-grained metamorphic and igneous rocks provided favorable conditions for the development of streamflow-dominated alluvial fan, despite arid to semi-arid climatic conditions during sedimentation.

건조 또는 아건조한 기후에서 하천류가 우세한 충적선상지의 발달 원인을 알아보기 위해 전라남도 고흥군 일원에 분포하는 백악기 두원층을 대상으로 퇴적학적 연구를 수행하였다. 연구지역의 두원층은 고원생대 편마암으로 구성된 기반암 상부에 부정합으로 분포한다. 퇴적상 분석 결과, 기반암 인근에서 역질 망상하천(퇴적상 조합1)이 발달하였으며, 기반암에서 멀어짐에 따라 7km의 범위에서 사질 망상하천(퇴적상 조합2)과 범람원(퇴적상 조합3)으로 퇴적환경의 변화가 나타난다. 퇴적환경의 측방변화와 범람원의 퇴적층 내 자색 이암에서 관찰되는 석회질 단괴 및 기반암 인근에서 측정한 방사상의 고수류 방향은 두원층이 건조 또는 아건조한 기후에서 형성된 하천류가 우세한 충적선상지에서 퇴적되었음을 지시한다. 최근 두원층에서 수행된 쇄설성 저어콘 절대연령에 관한 연구는 두원층의 기원지가 영남육괴 서부와 옥천변성대 남서부를 포함하는 한반도 남서부임을 지시하며, 이는 충적선상지의 유역분지가 넓었음을 지시한다. 넓은 유역분지는 많은 양의 물을 충적선상지로 공급하고 유역 분지 내부에 퇴적물을 일시적으로 저장함에 따라 쇄설류의 형성을 제한한다. 이와 더불어 주로 조립의 변성암 및 화성암으로 구성된 유역분지는 모래 크기의 퇴적물을 형성하여, 쇄설류 형성에 필요한 점토의 형성을 억제하였다. 따라서 건조 또는 아건조한 기후임에도 불구하고 넓은 유역분지와 유역분지를 주로 구성하는 조립질의 암석은 하천류가 우세한 충적선상지가 발달에 유리한 조건을 제공하였으며, 이로 인해 두원층이 하천류가 우세한 충적선상지에서 퇴적되었다.

Keywords

Acknowledgement

이 연구는 한국연구재단(No. 2020R1F1A1070752)과 1:5만 대강리 지질도폭 노사 연구(벌교, 원창 지역)의 지원으로 수행되었다. 이 논문은 두 분의 세심한 검토 의견으로 논문의 논리성과 가독성이 향상되었으며, 이에 감사드린다.

References

  1. Allen, J.R.L. (1968) Current Ripples: Their Relation to Patterns of Water and Sediment Motion. North-Holland Pub. Co., Amsterdam, 433p.
  2. Allen, P.A. (1981) Sediments and processes on a small stream-flow dominated, Devonian alluvial fan, Shetland Islands. Sediment. Geol., v.29, p.31-66, doi: 10.1016/0037-0738(81)90056-7.
  3. Arnott, R.W.C. and Hand, B.M. (1989) Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. J. Sediment. Res., v.59, p.1062-1069, doi: 10.1306/212F90F2-2B24-11D7-8648000102C1865D.
  4. Arzani, N. (2012) Catchment lithology as a major control on alluvial megafan development, Kohrud Mountain range, central Iran. Earth Surf. Proc. Land., v.37, p.726-740, doi: 10.1002/esp.3194.
  5. Arzani, N. and Jones, S.J. (2016) Upstream controls on evolution of dryland alluvial megafans: Quaternary examples from the Kohrud Mountain Range, central Iran. In Ventra, D., Clarke, L.E.(eds.), Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives, Geol. Soc. Lond. Spec. Publ., v.440, p.245-264, doi: 10.1144/SP440.2.
  6. Blair, T.C. (1999) Cause of dominance by sheetflood vs. debris-flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, v.46, p.1015-1028, doi: 10.1046/j.1365-3091.1999.00261.x.
  7. Blair, T.C. and Bilodeau, W.L. (1988) Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism. Geology, v.16, p.517-520, doi: 10.1130/0091-7613(1988)016<0517:DOTCIR>2.3.CO;2.
  8. Blair, T.C. and McPherson, J.G. (1994) Alluvial fan processes and forms. In Abrahams, A.D. and Parsons, A.J. (eds.), Geomorphology of Desert Environments, Chapman and Hall, London, p.354-402, doi: 10.1007/978-94-015-8254-4_14.
  9. Blair, T.C. and McPherson, J.G. (2009) Processes and forms of alluvial fans. In Parsons, A.J. and Abrahams, A.D.(eds.), Geomorphology of Desert Environments, 2nd(ed.), Springer, Dordrecht, p.413-467, doi: 10.1007/978-1-4020-5719-9_14.
  10. Bluck, B.J. (1979) Structure of coarse grained braided stream alluvium. Trans. Roy. Soc. Edinb. Earth Sci., v.70, p.181-221, doi: 10.1017/S0080456800012795.
  11. Bridge, J.S. (1984) Large-scale facies sequences in alluvial overbank environments. J. Sediment. Res., v.54, p.583-588, doi: 10.1306/212F8477-2B24-11D7-8648000102C1865D.
  12. Bristow, C.S. (1993) Sedimentary structures in bar tops in the Brahmaputra River, Bangladesh. In Best, J.L. and Bristow, C.S. (eds.), Braided Rivers, Geol. Soc. Lond. Spec. Publ., v.75, p.277-289, doi: 10.1144/GSL.SP.1993.075.01.17.
  13. Cant, D.J. and Walker, R.G. (1978) Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, v.25, p.625-648, doi: 10.1111/j.1365-3091.1978.tb00323.x.
  14. Chae, Y.-U., Ha, S., Kim, C.-B., Kim, K.S. and Lim, H.S. (2019) Zircon U-Pb ages of Duwon Formation and Goheung Tuff in Goheung area, southern Korea. J. Geol. Soc. Korea, v.55, p.583-594, doi: 10.14770/jgsk.2019.55.5.583.
  15. Chae, Y.-U., Ha, S., Choi, T., Kim, C.-B., Kim, K.S. and Lim, H.S. (2021) Detrital zircon provenance of the Lower Cretaceous Duwon Formation based on LA-MC-ICPMS U-Pb ages and morphology in the Goheung area, southern Korea: A new supply mechanism of Early Cretaceous zircons. Cretaceous Res., v.128, 104955, doi: 10.1016/j.cretres.2021.104955.
  16. Chakraborty, T. and Ghosh, P. (2010) The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Geomorphology, v.115, p.252-266, doi: 10.1016/j.geomorph.2009.06.035.
  17. Chang, K.H. (1975) Cretaceous stratigraphy of southeast Korea. J. Geol. Soc. Korea, v.11, p.1-23.
  18. Cheon, Y., Ha, S., Lee, S. and Son, M. (2020) Tectonic evolution of the Cretaceous Gyeongsang Back-arc Basin, SE Korea: Transition from sinistral transtension to strike-slip kinematics. Gondwana Res., v.83, p.16-35, doi: 10.1016/j.gr.2020.01.012.
  19. Cho, S.H. (2000) A study on paleoenvironments of the Cretaceous sedimentary basin in the northern part of Koheung Area, Chonnam Province. Ph.D. Thesis, Chonnam National University, Gwangju, Korea, 160p.
  20. Choi, D.K. (1985) Spores and pollen from the Gyeongsang Supergroup, southeastern Korea and their chronologic and paleoecologic implications. J. Paleont. Soc. Korea, v.1, p.33-50.
  21. Choi, H.I. (1986) Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern Korea. J. Geol. Soc. London, v.143, p.29-40, doi: 10.1144/gsjgs.143.1.0029.
  22. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Sci. Rev., v.101, p.225-249, doi: 10.1016/j.earscirev.2010.05.004.
  23. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Sci. Rev., v.52, p.175-235, doi: 10.1016/S0012-8252(00)00029-5.
  24. Chun, S.S. and Chough, S.K. (1992) Tectonic history of Cretaceous sedimentary basins in the southwestern Korean Peninsula and Yellow Sea. In Chough, S.K. (ed.), Sedimentary Basins in the Korean Peninsula and Adjacent Seas, Korean Sedimentology Research Group, Special Publication. Hanlimwon Publishers, Seoul, p.60-76.
  25. Ghim, Y.S., Ko, K. and Lee, B.C. (2020) Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas. Econ. Environ. Geol., v.53, p.397-411, doi: 10.9719/EEG.2020.53.4.397.
  26. Harvey, A.M. (2005) Differential effects of base-level, tectonic setting and climatic change on Quaternary alluvial fans in the northern Great Basin, Nevada, USA. In Harvey, A.M., Mather, A.E. and Stokes, M.(eds.), Alluvial Fans: geomorphology, sedimentology, dynamics, Geol. Soc. Lond. Spec. Publ., v.251, p.117-131, doi: 10.1144/GSL.SP.2005.251.01.09.
  27. Harvey, A.M. (2011) Dryland alluvial fans. In Thomas, D.S.G.(ed.), Arid Zone Geomorphology: Process, Form and Change in Drylands, 3rd (ed.). John Willey & Sons, p.333-371, doi: 10.1002/9780470710777.ch14.
  28. Hein, F.J. and Walker, R.G. (1977) Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. Can. J. Earth Sci., v.14, p.562-570, doi: 10.1139/e77-058.
  29. Houck, K.J. and Lockley, M.G. (2006) Life in an active volcanic area: Petrology and sedimentology of dinosaur track beds in the Jindong Formation (Cretaceous), Gyeongsang Basin, South Korea. Cretaceous Res., v.27, p.102-122, doi: 10.1016/j.cretres.2005.10.004.
  30. Hubert, J.F. (1978) Paleosol caliche in the New Haven Arkose, Newark Group, Connecticut. Palaeogeogr. Palaeocl. Palaeoecol., v.24, p.151-168, doi: 10.1016/0031-0182(78)90004-4.
  31. Jo, H.R. (2003) Depositional environments, architecture, and controls of Early Cretaceous non-marine successions in the northwestern part of Kyongsang Basin, Korea. Sediment. Geol., v.161, p.269-294, doi: 10.1016/S0037-0738(03)00130-1.
  32. Jo, H.R. and Chough, S.K. (2001) Architectural analysis of fluvial sequences in the northwestern part of Kyongsang Basin (Early Cretaceous), SE Korea. Sediment. Geol., v.144, p.307-334, doi: 10.1016/S0037-0738(01)00123-3.
  33. Jo, H.R., Rhee, C.W. and Chough, S.K. (1997) Distinctive characteristics of a streamflow-dominated alluvial fan deposit: Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea. Sediment. Geol., v.110, p.61-79, doi: 10.1016/S0037-0738(96)00083-8.
  34. Kee, W.-S., Kim, S.W., Kim, H, Hong, P., Kwon, C.W., Lee, H.-J., Cho, D.-L., Koh, H.J., Song, K.-Y., Byun, U.H., Jang, Y. and Lee, B.C. (2019) Geological Map of Korea (1:1,000,000). Korea Institute of Geoscience and Mineral Resources, Daejeon, doi: 10.22747/data.20210324.3052.
  35. Kenrick, P., You, H.S., Koh, Y.K., Kim, J.Y., Cho, S.H. and Kim, H.G. (2000) Cretaceous plant fossils from the Kohung area, Chonnam, Korea. J. Paleont. Soc. Korea, v.16, p.45-56.
  36. Kim, S.W., Park, S.-I., Kee, W.-S. and Kim, B.C. (2015) Geological Report of the Goheung Sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, Daejeon, 54p, doi: 10.22747/data.20210324.3052.
  37. Kostaschuk, R.A., Macdonald, G.M. and Putnam, P.E. (1986) Depositional processes and alluvial fan-drainage basin morphometric relationships near Banff, Alberta, Canada. Earth Surf. Proc. Land., v.11, p.471-484, doi: 10.1002/esp.3290110502.
  38. Lee, S.-Y. and Hwang, I.G. (2012) Vertical variation of sedimentary facies and depositional environment in the core section of the lower part of the Sindong Group, northwestern part of the Gyeongsang Basin. J. Geol. Soc. Korea, v.48, p.365-381.
  39. Levson, M. and Rutter, N.W. (2000) Influence of bedrock geology on sedimentation in Pre-Late Wisconsinan alluvial fans in the Canadian Rocky Mountains. Quatern. Int., v.68-71, p.133-146, doi: 10.1016/S1040-6182(00)00039-2.
  40. Mack, G.H., James, W.C. and Monger, H.C, (1993) Classification of paleosols. Geol. Soc. Am. Bull., v.105, p.129-136, doi: 10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2.
  41. Maizels, J. (1993) Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sediment. Geol., v.85, p.299-325, doi: 10.1016/0037-0738(93)90090-R.
  42. Miall, A.D. (1977) A review of the braided river depositional environment. Earth-Sci. Rev., v.13, p.1-62, doi: 10.1016/0012-8252(77)90055-1.
  43. Miall, A.D. (1985) Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Sci. Rev., v.22, p.261-308, doi: 10.1016/0012-8252(85)90001-7.
  44. Moscariello, A. (2017). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo-energy exploration and development. In Ventra, D. and Clarke, L. E.(eds.), Geology and geomorphology of alluvial and fluvial fans: Terrestrial and planetary perspectives. Geol. Soc. Lond. Spec. Publ., v.440, p.215-243, doi: 10.1144/SP440.11.
  45. Nichols, G.J. and Thompson, B. (2005) Bedrock lithology control on contemporaneous alluvial fan facies, Oligo-Miocene, southern Pyrenees, Spain. Sedimentology, v.52, p.571-585, doi: 10.1111/j.1365-3091.2005.00711.x.
  46. Nichols, G.J. and Fisher, J.A. (2007) Processes, facies and architecture of fluvial distributary system deposits: Sediment. Geol., v.195, p.75-90, doi: 10.1016/j.sedgeo.2006.07.004.
  47. Okada, H. (2000) Nature and development of Cretaceous sedimentary basins in East Asia: a review. Geosci. J., v.4, p.271-282, doi: 10.1007/BF02914036.
  48. Paik, I.S. and Kim, H.J. (2003) Palustrine calcretes of the Cretaceous Gyeongsang Supergroup, Korea: Variation and paleoenvironmental implications. Isl. Arc, v.12, p.110-124, doi: 10.1046/j.1440-1738.2003.00384.x.
  49. Paik, I.S. and Kim, H.J. (2006) Playa lake and sheetflood deposits of the Upper Cretaceous Jindong Formation, Korea: Occurrences and palaeoenvironments. Sediment. Geol., v.187, p.83-103, doi: 10.1016/j.sedgeo.2005.12.006.
  50. Paik, I.S. and Lee, Y.I. (1998) Desiccation cracks in vertic palaeosols of the Cretaceous Hasandong Formation, Korea: genesis and palaeoenvironmental implications. Sediment. Geol., v.119, p.161-179, doi: 10.1016/S0037-0738(98)00041-4.
  51. Paik, I.S., Kim, H.J. and Lee, Y.I. (2001) Dinosaur track-bearing deposits in the Cretaceous Jindong Formation, Korea: occurrence, palaeoenvironments and preservation. Cretaceous Res., v.22, p.79-92, doi: 10.1006/cres.2000.0241.
  52. Paik, I.S., Huh, M., So, Y.H., Lee, J.E. and Kim, H.J. (2007) Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications. J. Asian Earth Sci., v.30, p.93-107, doi: 10.1016/j.jseaes.2006.07.013.
  53. Retallack G.J. (1988) Field recognition of paleosols. In Reinhardt J. and Sigleo W.R.(eds.), Paleosols and weathering through geologic time: Principles and applications, Virginia, Geol. Soc. Am. Spec. Pap., v.216, p.1-20.
  54. Rhee, C.W., Ryang, W.H. and Chough, S.K. (1993) Contrasting development patterns of crevasse channel deposits in Cretaceous alluvial successions, Korea, Sediment. Geol., v.85, p.401-410, doi: 10.1016/0037-0738(93)90095-M.
  55. Rhee, C.W., Jo, H.R. and Chough, S.K. (1998) An allostratigraphic approach to a non-marine basin: the northwestern part of Cretaceous Kyongsang Basin, SE Korea. Sedimentology, v.45, p.449-472, doi: 10.1046/j.1365-3091.1998.00180.x.
  56. Ridgway, K.D. and DeCelles, P.G. (1993) Stream-dominated alluvial fan and lacustrine depositional systems in Cenozoic strike-slip basins, Denali fault system, Yukon Territory, Canada. Sedimentology, v.40, p.645-666, doi: 10.1111/j.1365-3091.1993.tb01354.x.
  57. Schumm, S.A. (1977) The fluvial system. Wiley, New York, 338p.
  58. Smith, N.D. (1974) Sedimentology and bar formation in the upper Kicking Horse River, a braided meltwater stream. J. Geol., v.82, p.205-223, doi: 10.1086/627959.
  59. Smith, N.D., Cross, T.A., Dufficy, J.P. and Clough, S.R. (1989) Anatomy of an avulsion. Sedimentology, v.36, p.1-23, doi: 10.1111/j.1365-3091.1989.tb00817.x.
  60. Tanner, L.H. (2010) Continental carbonates as indicators of paleoclimate. In Alonso-Zarza, A.M. and Tanner, L.H.(eds.). Carbonates in continental settings: geochemistry, diagenesis and applications, Dev. Sedimentol., Elsevier, Amsterdam, v.62 p.179-214, doi: 10.1016/S0070-4571(09)06204-9.
  61. Todd, S.P. (1989) Stream-driven, high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, v.36, p.513-530, doi: 10.1111/j.1365-3091.1989.tb02083.x.
  62. Wagreich, M. and Strauss, P.E. (2005) Source area and tectonic control on alluvial-fan development in the Miocene Fohnsdorf intramontane basin, Austria. In Harvey, A.M., Mather, A.E. and Stokes, M.(eds.), Alluvial Fans: geomorphology, sedimentology, dynamics, Geol. Soc. Lond. Spec. Publ., v.251, p.207-216, doi: 10.1144/GSL.SP.2005.251.01.14.
  63. Wells, S.G. and Harvey, A.M. (1987) Sedimentologic and geomorphic variations in storm generated alluvial fans, Howgill Fells, northwest England. Geol. Soc. Am. Bull., v.98, p.182-198, doi: 10.1130/0016-7606(1987)98<182:SAGVIS>2.0.CO;2.
  64. Weissmann, G.S., Mount, J.F. and Fogg, G.E. (2002) Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, U.S.A. J. Sediment. Res., v.72, p.240-251, doi: 10.1306/062201720240.
  65. Weissmann, G.S., Hartley, A.J., Nichols, G.J., Scuderi, L.A., Olsen, M. and Buehler, H. (2011) Alluvial facies distributions in continental sedimentary basins: Distributive fluvial Systems. In Davidson, S.K., Leleu, S. and North, C.P.(eds.), From River to Rock Record: The preservation of fluvial sediments and their subsequent interpretation, SEPM Spec. P., v.97, p.327-356, doi: 10.2110/sepmsp.097.327.
  66. Weissmann, G.S., Hartley, A.J., Scuderi, L.A., Nichols, G.J., Davidson, S.K., Owen, A, Atchley, S.C., Bhattacharyya, P., Chakraborty, T., Ghosh, P., Nordt, L.C., Michel, L. and Tabor, N.J. (2013) Prograding distributive fluvial systems - geomorphic models and ancient examples. In Dreise, S. G., Nordt, L.C. and McCarthy, P.L.(eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology, SEPM Spec. P., v.104, p.131-147, doi: 10.2110/sepmsp.104.16.
  67. Yun, S.H. and Hwang, I.H. (1988) Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea. Jour. Korean Inst. Mining Geol., v.21, p.335-348.