Browse > Article
http://dx.doi.org/10.9719/EEG.2021.54.4.441

The Influence of the Characteristics of Drainage Basin on Depositional Processes of the Alluvial Fan: An Example from the Cretaceous Duwon Formation in Goheung Area  

Lee, Kyung Jin (Department of Geology, Kyungpook National University)
Park, Seung-Ik (Department of Geology, Kyungpook National University)
Lee, Hyojong (Marine and Petroleum Division, Korea Institute of Geosciences and Mineral Resources)
Gihm, Yong Sik (Department of Geology, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.54, no.4, 2021 , pp. 441-456 More about this Journal
Abstract
The Cretaceous Duwon Formation was studied on the basis of sedimentologic analysis in order to unravel geologic conditions for the development of the streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. The Duwon Formation unconformably overlies the Paleoproterozoic gneiss (basement). Based on the sedimentologic analysis, the Duwon Formation is interpreted to have been deposited in gravelly braided stream (FA-1) near the basement, laterally transitional to sandy braided stream (FA-2) and floodplain environments (FA-3) with distance (< 7 km) from the basement. Lateral changes in sedimentary facies and the well development of calcrete nodules in FA-3, together with radial paleocurrent directions measured in FA-1, are suggestive of the deposition of the Duwon Formation in streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. Recent analysis of detrital zircon chronology suggests that sediments of the Duwon Formation were derived from the southwestern part of the Korean peninsula, including the western part of Yeongnam Massif and the southwestern part of Okcheon Belt. This implies the alluvial fan where the Duwon Formation accumulated had the large drainage basin. Because the large drainage basin can supply the significant amounts of water and temporarily store the sediments within the basin, watery floodwater carried sediments to the alluvial fan rather than the debris flows. Furthermore, the drainage basin largely composed of coarse-grained metamorphic and igneous rocks produced sand-grade sediments, preventing evolution of floodwater into debris flows. We suggest that combined effects of the large drainage basin and its coarse-grained metamorphic and igneous rocks provided favorable conditions for the development of streamflow-dominated alluvial fan, despite arid to semi-arid climatic conditions during sedimentation.
Keywords
braided stream; floodplain; streamflow-dominated alluvial fan; arid to semi-arid climate; basemen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wagreich, M. and Strauss, P.E. (2005) Source area and tectonic control on alluvial-fan development in the Miocene Fohnsdorf intramontane basin, Austria. In Harvey, A.M., Mather, A.E. and Stokes, M.(eds.), Alluvial Fans: geomorphology, sedimentology, dynamics, Geol. Soc. Lond. Spec. Publ., v.251, p.207-216, doi: 10.1144/GSL.SP.2005.251.01.14.
2 Kim, S.W., Park, S.-I., Kee, W.-S. and Kim, B.C. (2015) Geological Report of the Goheung Sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, Daejeon, 54p, doi: 10.22747/data.20210324.3052.
3 Todd, S.P. (1989) Stream-driven, high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, v.36, p.513-530, doi: 10.1111/j.1365-3091.1989.tb02083.x.   DOI
4 Yun, S.H. and Hwang, I.H. (1988) Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea. Jour. Korean Inst. Mining Geol., v.21, p.335-348.
5 Chae, Y.-U., Ha, S., Kim, C.-B., Kim, K.S. and Lim, H.S. (2019) Zircon U-Pb ages of Duwon Formation and Goheung Tuff in Goheung area, southern Korea. J. Geol. Soc. Korea, v.55, p.583-594, doi: 10.14770/jgsk.2019.55.5.583.   DOI
6 Chae, Y.-U., Ha, S., Choi, T., Kim, C.-B., Kim, K.S. and Lim, H.S. (2021) Detrital zircon provenance of the Lower Cretaceous Duwon Formation based on LA-MC-ICPMS U-Pb ages and morphology in the Goheung area, southern Korea: A new supply mechanism of Early Cretaceous zircons. Cretaceous Res., v.128, 104955, doi: 10.1016/j.cretres.2021.104955.   DOI
7 Chakraborty, T. and Ghosh, P. (2010) The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Geomorphology, v.115, p.252-266, doi: 10.1016/j.geomorph.2009.06.035.   DOI
8 Cheon, Y., Ha, S., Lee, S. and Son, M. (2020) Tectonic evolution of the Cretaceous Gyeongsang Back-arc Basin, SE Korea: Transition from sinistral transtension to strike-slip kinematics. Gondwana Res., v.83, p.16-35, doi: 10.1016/j.gr.2020.01.012.   DOI
9 Cho, S.H. (2000) A study on paleoenvironments of the Cretaceous sedimentary basin in the northern part of Koheung Area, Chonnam Province. Ph.D. Thesis, Chonnam National University, Gwangju, Korea, 160p.
10 Wells, S.G. and Harvey, A.M. (1987) Sedimentologic and geomorphic variations in storm generated alluvial fans, Howgill Fells, northwest England. Geol. Soc. Am. Bull., v.98, p.182-198, doi: 10.1130/0016-7606(1987)98<182:SAGVIS>2.0.CO;2.   DOI
11 Weissmann, G.S., Mount, J.F. and Fogg, G.E. (2002) Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, U.S.A. J. Sediment. Res., v.72, p.240-251, doi: 10.1306/062201720240.   DOI
12 Weissmann, G.S., Hartley, A.J., Nichols, G.J., Scuderi, L.A., Olsen, M. and Buehler, H. (2011) Alluvial facies distributions in continental sedimentary basins: Distributive fluvial Systems. In Davidson, S.K., Leleu, S. and North, C.P.(eds.), From River to Rock Record: The preservation of fluvial sediments and their subsequent interpretation, SEPM Spec. P., v.97, p.327-356, doi: 10.2110/sepmsp.097.327.
13 Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Sci. Rev., v.101, p.225-249, doi: 10.1016/j.earscirev.2010.05.004.   DOI
14 Hein, F.J. and Walker, R.G. (1977) Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. Can. J. Earth Sci., v.14, p.562-570, doi: 10.1139/e77-058.   DOI
15 Houck, K.J. and Lockley, M.G. (2006) Life in an active volcanic area: Petrology and sedimentology of dinosaur track beds in the Jindong Formation (Cretaceous), Gyeongsang Basin, South Korea. Cretaceous Res., v.27, p.102-122, doi: 10.1016/j.cretres.2005.10.004.   DOI
16 Hubert, J.F. (1978) Paleosol caliche in the New Haven Arkose, Newark Group, Connecticut. Palaeogeogr. Palaeocl. Palaeoecol., v.24, p.151-168, doi: 10.1016/0031-0182(78)90004-4.   DOI
17 Lee, S.-Y. and Hwang, I.G. (2012) Vertical variation of sedimentary facies and depositional environment in the core section of the lower part of the Sindong Group, northwestern part of the Gyeongsang Basin. J. Geol. Soc. Korea, v.48, p.365-381.
18 Weissmann, G.S., Hartley, A.J., Scuderi, L.A., Nichols, G.J., Davidson, S.K., Owen, A, Atchley, S.C., Bhattacharyya, P., Chakraborty, T., Ghosh, P., Nordt, L.C., Michel, L. and Tabor, N.J. (2013) Prograding distributive fluvial systems - geomorphic models and ancient examples. In Dreise, S. G., Nordt, L.C. and McCarthy, P.L.(eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology, SEPM Spec. P., v.104, p.131-147, doi: 10.2110/sepmsp.104.16.
19 Bristow, C.S. (1993) Sedimentary structures in bar tops in the Brahmaputra River, Bangladesh. In Best, J.L. and Bristow, C.S. (eds.), Braided Rivers, Geol. Soc. Lond. Spec. Publ., v.75, p.277-289, doi: 10.1144/GSL.SP.1993.075.01.17.
20 Cant, D.J. and Walker, R.G. (1978) Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, v.25, p.625-648, doi: 10.1111/j.1365-3091.1978.tb00323.x.   DOI
21 Levson, M. and Rutter, N.W. (2000) Influence of bedrock geology on sedimentation in Pre-Late Wisconsinan alluvial fans in the Canadian Rocky Mountains. Quatern. Int., v.68-71, p.133-146, doi: 10.1016/S1040-6182(00)00039-2.   DOI
22 Jo, H.R., Rhee, C.W. and Chough, S.K. (1997) Distinctive characteristics of a streamflow-dominated alluvial fan deposit: Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea. Sediment. Geol., v.110, p.61-79, doi: 10.1016/S0037-0738(96)00083-8.   DOI
23 Okada, H. (2000) Nature and development of Cretaceous sedimentary basins in East Asia: a review. Geosci. J., v.4, p.271-282, doi: 10.1007/BF02914036.   DOI
24 Paik, I.S. and Kim, H.J. (2003) Palustrine calcretes of the Cretaceous Gyeongsang Supergroup, Korea: Variation and paleoenvironmental implications. Isl. Arc, v.12, p.110-124, doi: 10.1046/j.1440-1738.2003.00384.x.   DOI
25 Paik, I.S. and Kim, H.J. (2006) Playa lake and sheetflood deposits of the Upper Cretaceous Jindong Formation, Korea: Occurrences and palaeoenvironments. Sediment. Geol., v.187, p.83-103, doi: 10.1016/j.sedgeo.2005.12.006.   DOI
26 Paik, I.S. and Lee, Y.I. (1998) Desiccation cracks in vertic palaeosols of the Cretaceous Hasandong Formation, Korea: genesis and palaeoenvironmental implications. Sediment. Geol., v.119, p.161-179, doi: 10.1016/S0037-0738(98)00041-4.   DOI
27 Paik, I.S., Kim, H.J. and Lee, Y.I. (2001) Dinosaur track-bearing deposits in the Cretaceous Jindong Formation, Korea: occurrence, palaeoenvironments and preservation. Cretaceous Res., v.22, p.79-92, doi: 10.1006/cres.2000.0241.   DOI
28 Chun, S.S. and Chough, S.K. (1992) Tectonic history of Cretaceous sedimentary basins in the southwestern Korean Peninsula and Yellow Sea. In Chough, S.K. (ed.), Sedimentary Basins in the Korean Peninsula and Adjacent Seas, Korean Sedimentology Research Group, Special Publication. Hanlimwon Publishers, Seoul, p.60-76.
29 Choi, H.I. (1986) Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern Korea. J. Geol. Soc. London, v.143, p.29-40, doi: 10.1144/gsjgs.143.1.0029.   DOI
30 Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Sci. Rev., v.52, p.175-235, doi: 10.1016/S0012-8252(00)00029-5.   DOI
31 Ghim, Y.S., Ko, K. and Lee, B.C. (2020) Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas. Econ. Environ. Geol., v.53, p.397-411, doi: 10.9719/EEG.2020.53.4.397.   DOI
32 Harvey, A.M. (2011) Dryland alluvial fans. In Thomas, D.S.G.(ed.), Arid Zone Geomorphology: Process, Form and Change in Drylands, 3rd (ed.). John Willey & Sons, p.333-371, doi: 10.1002/9780470710777.ch14.
33 Ridgway, K.D. and DeCelles, P.G. (1993) Stream-dominated alluvial fan and lacustrine depositional systems in Cenozoic strike-slip basins, Denali fault system, Yukon Territory, Canada. Sedimentology, v.40, p.645-666, doi: 10.1111/j.1365-3091.1993.tb01354.x.   DOI
34 Mack, G.H., James, W.C. and Monger, H.C, (1993) Classification of paleosols. Geol. Soc. Am. Bull., v.105, p.129-136, doi: 10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2.   DOI
35 Blair, T.C. and McPherson, J.G. (2009) Processes and forms of alluvial fans. In Parsons, A.J. and Abrahams, A.D.(eds.), Geomorphology of Desert Environments, 2nd(ed.), Springer, Dordrecht, p.413-467, doi: 10.1007/978-1-4020-5719-9_14.
36 Bluck, B.J. (1979) Structure of coarse grained braided stream alluvium. Trans. Roy. Soc. Edinb. Earth Sci., v.70, p.181-221, doi: 10.1017/S0080456800012795.   DOI
37 Bridge, J.S. (1984) Large-scale facies sequences in alluvial overbank environments. J. Sediment. Res., v.54, p.583-588, doi: 10.1306/212F8477-2B24-11D7-8648000102C1865D.   DOI
38 Nichols, G.J. and Fisher, J.A. (2007) Processes, facies and architecture of fluvial distributary system deposits: Sediment. Geol., v.195, p.75-90, doi: 10.1016/j.sedgeo.2006.07.004.   DOI
39 Schumm, S.A. (1977) The fluvial system. Wiley, New York, 338p.
40 Smith, N.D. (1974) Sedimentology and bar formation in the upper Kicking Horse River, a braided meltwater stream. J. Geol., v.82, p.205-223, doi: 10.1086/627959.   DOI
41 Kostaschuk, R.A., Macdonald, G.M. and Putnam, P.E. (1986) Depositional processes and alluvial fan-drainage basin morphometric relationships near Banff, Alberta, Canada. Earth Surf. Proc. Land., v.11, p.471-484, doi: 10.1002/esp.3290110502.   DOI
42 Jo, H.R. (2003) Depositional environments, architecture, and controls of Early Cretaceous non-marine successions in the northwestern part of Kyongsang Basin, Korea. Sediment. Geol., v.161, p.269-294, doi: 10.1016/S0037-0738(03)00130-1.   DOI
43 Kee, W.-S., Kim, S.W., Kim, H, Hong, P., Kwon, C.W., Lee, H.-J., Cho, D.-L., Koh, H.J., Song, K.-Y., Byun, U.H., Jang, Y. and Lee, B.C. (2019) Geological Map of Korea (1:1,000,000). Korea Institute of Geoscience and Mineral Resources, Daejeon, doi: 10.22747/data.20210324.3052.
44 Kenrick, P., You, H.S., Koh, Y.K., Kim, J.Y., Cho, S.H. and Kim, H.G. (2000) Cretaceous plant fossils from the Kohung area, Chonnam, Korea. J. Paleont. Soc. Korea, v.16, p.45-56.
45 Nichols, G.J. and Thompson, B. (2005) Bedrock lithology control on contemporaneous alluvial fan facies, Oligo-Miocene, southern Pyrenees, Spain. Sedimentology, v.52, p.571-585, doi: 10.1111/j.1365-3091.2005.00711.x.   DOI
46 Maizels, J. (1993) Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sediment. Geol., v.85, p.299-325, doi: 10.1016/0037-0738(93)90090-R.   DOI
47 Miall, A.D. (1977) A review of the braided river depositional environment. Earth-Sci. Rev., v.13, p.1-62, doi: 10.1016/0012-8252(77)90055-1.   DOI
48 Miall, A.D. (1985) Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Sci. Rev., v.22, p.261-308, doi: 10.1016/0012-8252(85)90001-7.   DOI
49 Paik, I.S., Huh, M., So, Y.H., Lee, J.E. and Kim, H.J. (2007) Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications. J. Asian Earth Sci., v.30, p.93-107, doi: 10.1016/j.jseaes.2006.07.013.   DOI
50 Retallack G.J. (1988) Field recognition of paleosols. In Reinhardt J. and Sigleo W.R.(eds.), Paleosols and weathering through geologic time: Principles and applications, Virginia, Geol. Soc. Am. Spec. Pap., v.216, p.1-20.
51 Allen, P.A. (1981) Sediments and processes on a small stream-flow dominated, Devonian alluvial fan, Shetland Islands. Sediment. Geol., v.29, p.31-66, doi: 10.1016/0037-0738(81)90056-7.   DOI
52 Smith, N.D., Cross, T.A., Dufficy, J.P. and Clough, S.R. (1989) Anatomy of an avulsion. Sedimentology, v.36, p.1-23, doi: 10.1111/j.1365-3091.1989.tb00817.x.   DOI
53 Tanner, L.H. (2010) Continental carbonates as indicators of paleoclimate. In Alonso-Zarza, A.M. and Tanner, L.H.(eds.). Carbonates in continental settings: geochemistry, diagenesis and applications, Dev. Sedimentol., Elsevier, Amsterdam, v.62 p.179-214, doi: 10.1016/S0070-4571(09)06204-9.   DOI
54 Rhee, C.W., Ryang, W.H. and Chough, S.K. (1993) Contrasting development patterns of crevasse channel deposits in Cretaceous alluvial successions, Korea, Sediment. Geol., v.85, p.401-410, doi: 10.1016/0037-0738(93)90095-M.   DOI
55 Rhee, C.W., Jo, H.R. and Chough, S.K. (1998) An allostratigraphic approach to a non-marine basin: the northwestern part of Cretaceous Kyongsang Basin, SE Korea. Sedimentology, v.45, p.449-472, doi: 10.1046/j.1365-3091.1998.00180.x.   DOI
56 Allen, J.R.L. (1968) Current Ripples: Their Relation to Patterns of Water and Sediment Motion. North-Holland Pub. Co., Amsterdam, 433p.
57 Arnott, R.W.C. and Hand, B.M. (1989) Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. J. Sediment. Res., v.59, p.1062-1069, doi: 10.1306/212F90F2-2B24-11D7-8648000102C1865D.   DOI
58 Arzani, N. (2012) Catchment lithology as a major control on alluvial megafan development, Kohrud Mountain range, central Iran. Earth Surf. Proc. Land., v.37, p.726-740, doi: 10.1002/esp.3194.   DOI
59 Blair, T.C. and Bilodeau, W.L. (1988) Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism. Geology, v.16, p.517-520, doi: 10.1130/0091-7613(1988)016<0517:DOTCIR>2.3.CO;2.   DOI
60 Blair, T.C. and McPherson, J.G. (1994) Alluvial fan processes and forms. In Abrahams, A.D. and Parsons, A.J. (eds.), Geomorphology of Desert Environments, Chapman and Hall, London, p.354-402, doi: 10.1007/978-94-015-8254-4_14.
61 Harvey, A.M. (2005) Differential effects of base-level, tectonic setting and climatic change on Quaternary alluvial fans in the northern Great Basin, Nevada, USA. In Harvey, A.M., Mather, A.E. and Stokes, M.(eds.), Alluvial Fans: geomorphology, sedimentology, dynamics, Geol. Soc. Lond. Spec. Publ., v.251, p.117-131, doi: 10.1144/GSL.SP.2005.251.01.09.
62 Arzani, N. and Jones, S.J. (2016) Upstream controls on evolution of dryland alluvial megafans: Quaternary examples from the Kohrud Mountain Range, central Iran. In Ventra, D., Clarke, L.E.(eds.), Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives, Geol. Soc. Lond. Spec. Publ., v.440, p.245-264, doi: 10.1144/SP440.2.
63 Jo, H.R. and Chough, S.K. (2001) Architectural analysis of fluvial sequences in the northwestern part of Kyongsang Basin (Early Cretaceous), SE Korea. Sediment. Geol., v.144, p.307-334, doi: 10.1016/S0037-0738(01)00123-3.   DOI
64 Blair, T.C. (1999) Cause of dominance by sheetflood vs. debris-flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, v.46, p.1015-1028, doi: 10.1046/j.1365-3091.1999.00261.x.   DOI
65 Chang, K.H. (1975) Cretaceous stratigraphy of southeast Korea. J. Geol. Soc. Korea, v.11, p.1-23.
66 Moscariello, A. (2017). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo-energy exploration and development. In Ventra, D. and Clarke, L. E.(eds.), Geology and geomorphology of alluvial and fluvial fans: Terrestrial and planetary perspectives. Geol. Soc. Lond. Spec. Publ., v.440, p.215-243, doi: 10.1144/SP440.11.
67 Choi, D.K. (1985) Spores and pollen from the Gyeongsang Supergroup, southeastern Korea and their chronologic and paleoecologic implications. J. Paleont. Soc. Korea, v.1, p.33-50.