• Title/Summary/Keyword: zinc spray

Search Result 80, Processing Time 0.031 seconds

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

A Study of Corrosion Resistance and Torque in Bolt Coated with Magni 565 (Magni 565 코팅 볼트의 내식성 및 토오크 특성에 대한 연구)

  • Kim, Sang-Soo;Kim, Moo-Gil;Jung, Byong-Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.195-202
    • /
    • 2007
  • Corrosion resistance and torque of M10 bolt coated with Magni 565 were investigated. Corrosion protection mechanism were also studied with the microstructure of coating film. The bolts with the optimum conditions showed around $10{\mu}m$ layer thickness, a great corrosion resistance in salt spray test and a proper torque in torque/tension test. But torque coefficient k increased with the number of bolting and clamping force of M10 bolt showed significantly lower than that of specified value 28.3kN. It was thought that the repeated bolting made the coating film peel off and powdery. The sample coated with optimum coating conditions showed more higher polarization resistance and corrosion potential than the specimens of top and base coat only. The base coating film was composed of lamellar zinc flakes, which provides a large sacrificial cathodic protection. Meanwhile, the top coating film was composed of organic aluminium pigments layer, which provides barrier protection to the corrosion circumstances.

Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives - A Review

  • Adewole, D.I.;Kim, I.H.;Nyachoti, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.909-924
    • /
    • 2016
  • The gut is the largest organ that helps with the immune function. Gut health, especially in young pigs has a significant benefit to health and performance. In an attempt to maintain and enhance intestinal health in pigs and improve productivity in the absence of in-feed antibiotics, researchers have evaluated a wide range of feed additives. Some of these additives such as zinc oxide, copper sulphate, egg yolk antibodies, mannan-oligosaccharides and spray dried porcine plasma and their effectiveness are discussed in this review. One approach to evaluate the effectiveness of these additives in vivo is to use an appropriate disease challenge model. Over the years, researchers have used a number of challenge models which include the use of specific strains of enterotoxigenic Escherichia coli, bacteria lipopolysaccharide challenge, oral challenge with Salmonella enteric serotype Typhimurium, sanitation challenge, and Lawsonia intercellularis challenge. These challenge models together with the criteria used to evaluate the responses of the animals to them are also discussed in this review.

Theory and practice of synthesized ZnO powders by ultrasonic spray pyrolysis method (초음파 분무 열분해법에 의한 ZnO 합성의 이론과 실제)

  • 서수형;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.60-66
    • /
    • 1995
  • Abstract The experimental results which is the aerosols behavior and distribution of atomized zinc nitrate ($Zn(NO_3)_2$) solution (0.5 M) by ultrasonic vibrator were in accord with the computer simulations. i.e., most aerosols passing through the reactor (hot zone) moved toward the center of reactor by thermophoresis as the axis of reactor increase. Also, the distribution of aerosols concentration was high at the center of reactor as the axis increase. Among the synthesized ZnO particles, shell-like aggregates of fracture type which could not see at the center of reactor were observed at near the wall of reactor, and the particle size ($ 1.2 {\mu\textrm{m}$) of near the wall was larger than that ($0.9 {\mu\textrm{m}$) of the center.

  • PDF

Experimental Study of The Corrosion Protection Performance of The Metal Spraying Process in accordance with ratio of Zn-Al (Zn-Al의 구성비율에 따른 금속용사 공법의 방식성능에 대한 실험적 연구)

  • Kim, Hae;Eom, Sung-Hyun;Jeong, Hyun-Gyu;Lee, Jeong-Bae;Kim, Seong-Soo;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.56-65
    • /
    • 2017
  • This study is an experimental study on the corrosion protection performance according to the configuration ratio of the Zn and Al. A metal spraying was used as the arc metal spraying method, a specimen was produced by varying the proportion ratio and coating thickness of the Zn and Al. Experimental methods visually observed to corrosion of the specimen for 1, 3, 7, 15 days was conducted in accordance with the CASS salt spray test. This study has confirmed that the performance of the corrosion protection improved against the increase in the Al content. Further, it was confirmed that excellent perfomance is exhibited when the coating thickness is secured over $80{\mu}m$. In addition, the SEM analysis was performed to observe the cross-sectional shape of the metal spraying specimen after CASS testing. The analysis result showed that the deterioration of the metal spraying coating layer was reduced as the Al content increases.

Physical Properties and Sulfur Absorption Capacity of Spray-dried Solid Sorbents for Desulfurization of Syngas (합성가스 중 $H_2S$ 정제용 탈황제의 물성 및 반응특성)

  • Baek, Jeom-In;Lee, Joong-Beom;Kim, Ji-Woong;Eom, Tae-Hyoung;Ryu, Jeong-Ho;Jeon, Won-Sik;Ryu, Chong-Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.880-883
    • /
    • 2009
  • 석탄가스화복합발전(IGCC) 시스템에서 합성가스 중에 포함된 황화수소($H_2S$)는 후단의 가스 터빈과 같은 장치의 부식을 방지하고, 합성가스를 이용하는 연료전지 등의 연계 공정에서 요구하는 수준에 맞추어 정제되어야 한다. 본 연구에서는 $H_2S$ 정제공정 추가에 따른 IGCC 시스템의 효율저하를 최소화하기 위하여 고온고압에서 사용가능한 탈황제를 분무건조법을 이용하여 제조하고 제조된 탈황제에 대해 물성 및 황 흡수능 시험을 실시하였다. 형상, 내마모도, 평균입자크기, 충진밀도와 함께 제조된 탈황제가 적용되는 유동층 공정에 적합한 강도를 보유하는지 여부를 미국표준시험방법에 의하여 측정하였다. 황 흡수능은 열중량분석기를 반응기로 사용하여 모사 합성 가스 분위기에서 측정하였다. 분무건조 성형된 탈황제의 일부가 구형이 아닌 타원형 또는 도넛 형태를 나타내고 있어 형상 개선을 위한 제조방법 개선이 필요한 것으로 나타났다. 제조된 탈황제는 기공도가 65% 이상으로 macropore가 기공부피의 대부분을, mesopore가 비표면적의 대부분을 제공하고 있었다. 소성온도를 650 $^{\circ}C$에서 750 $^{\circ}C$로 증가시킴에 따라 대체로 강도가 감소하는 경향을 나타내었다. 열중량분석기로 측정된 황 흡수능은 약 10 wt%로 나타났다. 제조된 탈황제 중 일부는 유동층 공정에 적합한 물성을 보유하고 있었으며 반응성 또한 기존에 개발된 탈황제에 버금가는 성능을 나타내어 향후 공정 적용이 가능할 것으로 분석되었다.

  • PDF

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

Influence of Heat Treatment and Magnesium Content on Corrosion Resistance of Al-Mg Coated Steel Sheet (PVD법에 의해 제작한 Al-Mg 코팅 강판의 내식성에 미치는 Mg 함량 및 열처리의 영향)

  • Kang, Jae Wook;Park, Jun-Mu;Hwang, Sung-Hwa;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • This study was intended to investigate the effect of the amount of magnesium addition and heat treatment in the Al-Mg coating film in order to improve corrosion resistance of aluminum coating. Al-Mg alloy films were deposited on cold rolled steel by physical vapor deposition sputtering method. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 10 min. The morphology was observed by SEM, component and phase of the deposited films were investigated by using GDLS and XRD, respectively. The corrosion behaviors of Al-Mg films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of magnesium content, the morphology of the deposited Al-Mg films changed from columnar to featureless structure and particle size was became fine. The x-ray diffraction data for deposited Al-Mg films showed only pure Al peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ were formed after heat treatment. All the sputtered Al-Mg films obviously showed good corrosion resistance compared with aluminum and zinc films. And corrosion resistance of Al-Mg film was increased after heat treatment.

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

Effects of Chitosan, Grain Amino Acid and Wood Vinegar Foliar Spray on the Quality and Storability of Grapes(Campbell Early) (키토산, 곡물아미노산, 목초액의 엽면살포가 포도(Campbell Early)의 품질 및 저장성에 미치는 영향)

  • Ju, In-Ok;Jung, Gi-Tai;Cheong, Seong-Soo;Moon, Young-Hun;Ryu, Jeong;Choi, Joung-Sik
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.119-123
    • /
    • 2007
  • Sprays containing chitosan, grain amino acids, or wood vinegar, were applied to vine leaves of the Campbell Early grape variety, and effects on the quality and storability of grapes were investigated. Weights of grape clusters and individual bemies did not differ significantly from the values seen when traditional agnicultural chemical treatment was used. The percentage of clusters over 300g in weight was, however, higher after spraying with chitosan, grain amino acids, or wood vinegar, than after agricultural chemical treatment, Grape moisture contents, levels of soluble solids, and reducing sugar concentrations, did not differ when the traditional treatment and the newer sparys were compared. Among minerals, the levels of potassium, iron and zinc measured in fresh grapes were increased by the clitosan, grain amino acids, and wood vinegar spray. After 8 weeks of MA storage, reducing sugar levels decreased, and titratable acidities increased, compared to levels measured at the beginning of storage. This was true regardless of the method of vine treatment the hardness of berries decreased slightly over 4-6 weeks of storage, and increased thereafter. The weight losses of grapes were relatively low(0.28-0.35%) on storage after any vine treatment tested. Grapes from vines sprayed with chitosan or grain amino acids showed a lower decay rate than did fruit from vines that had received a traditional agricultural chemical treatment. Sensory evaluation results indicated that the marketability of grapes from vines treated with traditional agricultural chemicals was better than that of grapes from vines sprayed with chitosan, grain amino acids, or wood vinegar.