• 제목/요약/키워드: zinc finger

검색결과 188건 처리시간 0.028초

게잡이 원숭이에서 Recombinant Human Erythropoietin의 4주간 투여 후 비장 유전자 발현 연구 (Effects of Recombinant Human Erythropoietin Treatment in Male Cynomolgus (Macaca fascicularis) Monkeys (II): Gene Expression Profiling in Spleen)

  • 윤석주;황지윤;임정선;정선영;김용범;김달현;권명상;한상섭;김충용
    • Toxicological Research
    • /
    • 제21권3호
    • /
    • pp.209-218
    • /
    • 2005
  • We investigated effects of recombinant human erythropoietin (rHuEPO) on profiles of mRNA transcripts in 6 male cynomolgus (M. fascicularis) monkey's spleen for 4 weeks. Six monkeys, composed of control and treatment group (Control : M1, M2, M3: Treatment : M4, M5, M6) were intravenously administered 3 times per week without or with a dose of rHuEPO 2730 IU/0.1 ml/kg. After 4 weeks rHuEPO treatment, spleen was removed for RNA isolation. Splenic gene expression was assessed using Affymetrix U133A 2.0 arrays containing 18,400 transcripts and variants, including 14,500 well-characterized human genes. Gene expression pattern was very different between individuals even in same treatment. In rHuEPO treated groups showed number of genes were up- or down-regulated (M4: 79: M5: 48; M6: 73 genes). Six genes (epidermal growth factor receptor, calgranulin A, estrogen receptor binding site associated antigen, matrix metalloproteinase 19, zinc finger and BTB domain containing 16, progestin and adipoQ receptor) were commonly expressed in rHuEPO treated group. The different individual response could be major considering factor in monkey experiment. Further study is needed to clarify the different individual response to rHuEPO in molecular level. This study will be valuable in the fundamental understanding and validation of molecular toxicology for bio-generic drugs including rHuEPO in cynomolgus monkey.

A case of Mowat-Wilson syndrome with developmental delays and Hirschsprung's disease

  • Lee, Darae;Kim, Ja Hye;Cho, Ja Hyang;Oh, Moon-Yun;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제11권2호
    • /
    • pp.79-82
    • /
    • 2014
  • Mowat-Wilson syndrome is an extremely rare genetic disease that is characterized by intellectual disability, facial dysmorphism, Hirschsprung's disease, and other congenital anomalies. This disorder is caused by heterozygous mutations or deletions in the zinc finger E-box-binding homeobox-2 gene (ZEB2). Thus far, approximately 200 cases of Mowat-Wilson syndrome have been reported worldwide. In Korea, only one case with a 2q22 deletion, which also affects ZEB2, has been previously reported. Here, we describe a patient with Mowat-Wilson syndrome who presented with developmental delays, typical facial dysmorphism, and Hirschsprung's disease. Molecular analysis of ZEB2 identified a novel heterozygous mutation at c.190dup ($p.S64Kfs^*6$). To our knowledge, this is the second report of a Korean patient with Mowat-Wilson syndrome that has been confirmed genetically.

저선량 방사선에 의한 Ikaros-Autotaxin 상호작용 조절 효과 (The Regulatory Effects of Low-Dose Ionizing Radiation on Ikaros-Autotaxin Interaction)

  • 강한아;조성준;김성진;남선영;양광희
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2016
  • Ikaros, a transcription factor containing zinc-finger motif, has known as a critical regulator of hematopoiesis in immune system. Ikaros protein modulates the transcription of target genes via binding to the regulatory elements of the genes promoters. However the regulatory function of Ikaros in other organelle except nuclear remains to be determined. This study explored radiation-induced modulatory function of Ikaros in cytoplasm. The results showed that Ikaros protein lost its DNA binding ability after LDIR (low-dose ionizing radiation) exposure. Cell fractionation and Western blot analysis showed that Ikaros protein was translocated into cytoplasm from nuclear by LDIR. This was confirmed by immunofluorescence assay. We identified Autotaxin as a novel protein which potentially interacts with Ikaros through in vitro protein-binding screening. Co-immunoprecipitation assay revealed that Ikaros and Autotaxin are able to bind each other. Autotaxin is a crucial enzyme generating lysophosphatidic acid (LPA), a phospholipid mediator, which has potential regulatory effects on immune cell growth and motility. Our results indicate that LDIR potentially regulates immune system via protein-protein interaction of Ikaros and Autotaxin.

Genetic and morphometric characteristics of Korean wild mice (KWM/Hym) captured at Chuncheon, South Korea

  • Nam, Hajin;Kim, Yoo Yeon;Kim, Boyoung;Yoon, Won Kee;Kim, Hyoung-Chin;Suh, Jun Gyo
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.311-316
    • /
    • 2018
  • Laboratory inbred mice are used widely and commonly in biomedical research, but inbred mice do not have a big enough gene pool for the research. In this study, genetic and morphometric analyses were performed to obtain data on the characteristics of a newly developing inbred strain (KWM/Hym) captured from Chuncheon, Korea. All of five Korean wild male mice have the zinc-finger Y (ZfY) gene. Also, all of 19 Korean wild mice used in this analysis have the AKV-type murine leukemia virus gene, indicating that Korean wild mice might be Mus musculus musculus. To identify the genetic polymorphism in KWM/Hym, SNP analysis was performed. In a comparison with 28 SNP markers, there was a considerable difference between KWM/Hym and several inbred strains. The homogeneity between KWM/Hym and the inbred strains was as follows: C57BL/6J (39.3%), BALB/c AJic (42.9%), and DBA/2J (50%). KWM/Hym is most similar to the PWK/PhJ inbred strain (96.4%) derived from wild mice (Czech Republic). To identify the morphometric characteristics of KWM/Hym, the external morphology was measured. The tail ratio of male and female was $79.60{\pm}3.09$ and $73.55{\pm}6.14%$, respectively. KWM/Hym has short and agouticolored hairs and its belly is white with golden hair. Taking these results together, KWM/Hym, a newly developing inbred mouse originated from wild mouse, might be use as new genetic resources to overcome the limitations of the current laboratory mice.

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.

Low lysine stimulates adipogenesis through ZFP423 upregulation in bovine stromal vascular cells

  • Joseph F., dela Cruz;Kevin Wayne Martinez, Pacunla;Seong Gu, Hwang
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1173-1183
    • /
    • 2022
  • Adipogenesis is a complex process comprising commitment and a differentiation stages. Through research, many different transcriptional factors were found to mediate preadipocyte commitment and differentiation. Lysine has a potential of regulating the commitment and differentiation of preadipocytes. In the present study, intramuscular stromal vascular cells (SVC) isolated from Hanwoo beef cattle were used to elucidate the effects of low lysine level on adipogenesis. SVC were isolated and incubated with various concentrations of lysine (0, 37.5, 75, 150 and 300 µg/mL). No significant difference were observed in the proliferation of SVC after 24 and 48 h of incubation with different concentration of lysine. On preadipocyte determination, reducing the level of lysine significantly increased the expression of preadipocyte commitment gene Zinc finger protein 423 and Preadipocyte factor-1. Upon differentiation, Oil Red O staining revealed that lipid accumulation and triglyceride content significantly increased with the decreasing lysine levels in the media. Expression levels of peroxisome proliferator-activated receptor-γ, CCAAT enhancer binding protein-α, sterol regulatory element binding protein-1c, Fatty Acid Binding Protein 4 and stearoyl CoA desaturase were upregulated by the decreased level of lysine. These data suggest the potential mechanism of action for the improved preadipocyte commitment and adipocyte differentiation in bovine intramuscular SVC upon treatment with low levels of lysine. These findings may be valuable in developing feed rations that promote deposition of intramuscular fat in beef cattle through lysine level modification.

Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization

  • Pan, Haixia;Yang, Linhan;Bai, Hansong;Luo, Jing;Deng, Ying
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.636-645
    • /
    • 2022
  • Background: Ginsenoside Rg3 and gemcitabine have mutual enhancing antitumor effects. However, the underlying mechanisms are not clear. This study explored the influence of ginsenoside Rg3 on Zinc finger protein 91 homolog (ZFP91) expression in pancreatic adenocarcinoma (PAAD) and their regulatory mechanisms on gemcitabine sensitivity. Methods: RNA-seq and survival data from The Cancer Genome Atlas (TCGA)-PAAD and Genotype-Tissue Expression (GTEx) were used for in-silicon analysis. PANC-1, BxPC-3, and PANC-1 gemcitabine-resistant (PANC-1/GR) cells were used for in vitro analysis. PANC-1 derived tumor xenograft nude mice model was used to assess the influence of ginsenoside Rg3 and ZFP91 on tumor growth in vivo. Results: Ginsenoside Rg3 reduced ZFP91 expression in PAAD cells in a dose-dependent manner. ZFP91 upregulation was associated with significantly shorter survival of patients with PAAD. ZFP91 overexpression induced gemcitabine resistance, which was partly conquered by ginsenoside Rg3 treatment. ZFP91 depletion sensitized PANC-1/GR cells to gemcitabine treatment. ZFP91 interacted with Testis-Specific Y-Encoded-Like Protein 2 (TSPYL2), induced its poly-ubiquitination, and promoted proteasomal degradation. Ginsenoside Rg3 treatment weakened ZFP91-induced TSPYL2 poly-ubiquitination and degradation. Enforced TSPYL2 expression increased gemcitabine sensitivity of PAAD cells and partly reversed induced gemcitabine resistance in PANC-1/GR cells. Conclusion: Ginsenoside Rg3 can increase gemcitabine sensitivity of pancreatic adenocarcinoma at least via reducing ZFP91 mediated TSPYL2 destabilization.

Huh7 간암세포에서 민들레 추출물의 상피간엽전환 억제를 통한 항전이 효과 (Anti-metastatic Effect of Taraxacum Officinale Water and Ethanol Extracts Through the Regulation of Epithelial-Mesenchymal Transition in Huh7 Cells)

  • 윤현서;안현;박충무
    • 대한통합의학회지
    • /
    • 제11권3호
    • /
    • pp.59-67
    • /
    • 2023
  • Purpose : Epithelial-to-mesenchymal transition (EMT) is recognized as an important cellular response in metastatic proceduresand characterized by loss of cellular polarity as well as gain of mesenchymal features, which enables migration and invasion. Hepatocellular carcinoma (HCC) is one of the most common primary carcinomas in the liver and exhibits a poor prognosis due to frequent extrahepatic metastasis. Taraxacum officinale has been used for a long time in oriental medicine because of its various pharmacological activitiessuch as anti-rheumatic, anti-inflammatory, antioxidative, and anticarcinogenic activities. In this study, the anti-metastatic activity of T. officinale water extract (TOWE) and ethanol extract (TOEE) was investigated through the regulation of EMT in the Huh7 cells. Methods : The effects of TOWE and TOEE on migratory and invasive activities were investigated by wound healing and in vitro invasion assays. Western blot analysis was also applied to analyze protein expression levels associated with EMT and their upstream transcription factors in Huh7 cells. Results : TOWE and TOEE treatment potently inhibited migration and invasion of Huh7 cells compared to the untreated group. Both extracts treatment inhibited protein expression levels of N-cadherin, matrix metalloproteinase (MMP)-9, and vimentin while E-cadherin was significantly accelerated. In addition, the activated status of transcription factors, Snail, nuclear factor (NF)-κ B, and zinc finger E-box binding homeobox (ZEB)1 was also inhibited with statistical significance. In comparison to both extracts, TOEE more potently attenuated migration, invasion, and EMT markers as well as their transcription factors in Huh7 cells than TOWE, which means that TOEE might possess more functional phytochemicals than TOWE. Conclusion : Consequently, TOWE and TOEEattenuated metastatic activity of hepatocellular carcinoma through the regulation of EMT markers and their transcription factors in Huh7 cells, which means that T. officinale might be a promising strategy for a chemopreventive agent against HCC metastasis.

Transcriptome analysis revealed regulatory mechanisms of light and culture density on free-living sporangial filaments of Neopyropia yezoensis (Rhodophyta)

  • Bangxiang He;Zhenbin Zheng;Jianfeng Niu;Xiujun Xie;Guangce Wang
    • ALGAE
    • /
    • 제38권4호
    • /
    • pp.283-294
    • /
    • 2023
  • Previous research indicated that free-living sporangial filament keep hollow morph under high-culture density and form bipartite cells under low-culture density, while the following conchospore release was inhibited by high light. Here, we further explored the molecular bases of these affects caused by light and culture density using a transcriptome analysis. Many differentially expressed genes (DEGs) related to carbon dioxide concentration and fixation, photosynthesis, chlorophyll synthesis and nitrogen absorption were upregulated under high-light conditions compared with low-light conditions, indicating the molecular basis of rapid vegetative growth under the former. The stress response- and ion transport-related DEGs, as well as the gene encoding the vacuole formation-brefeldin A-inhibited guanine nucleotide exchange protein (BIG, py05721), were highly expressed under high-density conditions, indicating the molecular basis of the hollow morph of free-living sporangial filaments under high-culture density conditions. Additionally, the brefeldin A treatment indicated that the hollow morph was directly influenced by vacuole formation-related vesicle traffic. Others DEGs related to cell wall components, zinc-finger proteins, ASPO1527, cell cycle and cytoskeleton were highly expressed in the low density with low-light group, which might be related to the formation and release of conchospores. These results provide a deeper understanding of sporangial filaments in Neopyropia yezoensis and related species.

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.