• Title/Summary/Keyword: zinc coated steel

Search Result 119, Processing Time 0.02 seconds

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

A Study on the Corrosion Mechanism by the Moisture on the Surface Layer of the Alloys Coated Steel Sheet (합금도금강판의 수적에 의한 표면층의 부식기구에 관한 연구)

  • Kim, Y.H.;Kim, S.K.;Jeon, E.C.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • Since the early 1980's the use of zinc-aluminum alloy-coated steel sheet(Galvalume) for vehicular corrosion protection has increased drastically. It is consisting of 55%Al-43.4% Zn-1.6%Si. Galvalume has a good corrosion resistance, heat reflectivity and shiny appearance, which has a dendritic structure of alloy layer. It has a good corrosion resistance due to dendritic structure. But, this also has a weak point against moisture during long period of transportation as sheeted and or coiled without any relation of chromating on the surface of steel sheet or not because of high humidity and temperature. Here, We studied the corrosion mechanism by the moisture.

  • PDF

Study of Drinking water pipeline Corrosion Mechanism by using Scale Analysis (부식 생성물 분석법을 이용한 상수도 금속관의 부식거동에 관한 연구)

  • 황상용;송호봉
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Carbon cast iron and Zinc coated steel were the most widely used portable water of supply and distribution Pipeline system. The leaching of red water in portable water could produce sericus environmental sanitary problems. Due to the red water was the most alternative to inner scale of metal pipeline. So this study was conducted the impact of red water on scale products, and was evaluated by the corrosive metal contaminants of 20 fears over. Surface tests, metal surface composition measurements of samples XRF, XRD, and SEM(EDS), analysis were used to investigate the corrosion characteristies of carbon cast iron and Zinc coated steel. As the contaminants of Fe increased the red water of carbon castiron pipe increased due to the scale products amount of $Fe_2O_3$ (Hemite).

A Study on the Characteristics of the Galvalume Steel Sheet (갈바륨 강판의 특성에 관한 연구)

  • 김순경;김민주;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.78-84
    • /
    • 1998
  • The problem of autobody corrosion has been addressed over the past decade by the increasing use of zinc and zinc alloy coated steels in automotive application. This paper describes the evaluation of formability, weldability and painted corrosion performance of galvalume steel sheet. This paper presents an overview of the program and some initial test results on the weldability, lifetime of the electrode tip shape of the spot welding and corrosion protection. Galvalume steel sheet improved corrosion performance and spot weldability of galvalume steel sheet was not changed under the influence of the variation of welding current. And tip shape has influenced on the lifetime of tip for galvalume steel sheet.

  • PDF

Effect of Deposit Conditions on Composition of Sn-Zn Alloy Deposits (Sn-Zn합금도금 조성에 미치는 도금조건의 영향)

  • 배대철;김현태;장삼규;조경목
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.537-544
    • /
    • 2001
  • In the present study, tin-zinc alloys were coated on a cold-rolled steel sheet with variations of electrolyte concentration, additives quantity and current density employing the Hull cell and circulation cell simulator. With an addition of additives of 2m1/L, tin-zinc deposits containing 10 to 40 percent Zn revealed a good surface appearance with weak acidic electrolytes. The organic additives suppressed the Sn deposition rate and thus increased the zinc contents in tin-zinc coating layers. The zinc contents in the tin-zinc coating layers depended almost linearly on the concentrations of metal ions of tin and zinc. Temperature of the electrolyte affected the composition tin-zinc coating layer. However, the concentration of complexants revealed little effectiveness. The surface morphology of tin-zinc coating showed dense tin and zinc phases with fine equiaxed grains with the high current density.

  • PDF