• Title/Summary/Keyword: zero-voltage-switching (ZVS)

Search Result 438, Processing Time 0.02 seconds

High-Frequency GaN HEMTs Based Point-of-Load Synchronous Buck Converter with Zero-Voltage Switching

  • Lee, Woongkul;Han, Di;Morris, Casey T.;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.601-609
    • /
    • 2017
  • Gallium nitride (GaN) power switching devices are promising candidates for high switching frequency and high efficiency power conversion due to their fast switching, low on-state resistance, and high-temperature operation capability. In order to facilitate the use of these new devices better, it is required to investigate the device characteristics and performance in detail preferably by comparing with various conventional silicon (Si) devices. This paper presents a comprehensive study of GaN high electron mobility transistor (HEMT) based non-isolated point-of-load (POL) synchronous buck converter operating at 2.7 MHz with a high step-down ratio (24 V to 3.3 V). The characteristics and performance of GaN HEMT and three different Si devices are analytically investigated and the optimal operating point for GaN HEMT is discussed. Zero-voltage switching (ZVS) is implemented to minimize switching loss in high switching frequency operation. The prototype circuit and experimental data support the validity of analytical and simulation results.

A Novel ZVS Soft-Switching H-Bridge inverter (새로운 ZVS 소프트 스위칭 H-Bridge 인버터)

  • Choi, Kwang-Soo;Jung, Doo-Yong;Kim, Jae-Hyung;Lee, Su-Won;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.130-132
    • /
    • 2008
  • In this paper, we have proposed a novel zero-voltage-switching (ZVS) soft-switching H-bridge inverter. Because the conventional H-Bridge inverter generates switching losses at turn on and off, the efficiency is reduced. The proposed inverter operates ZVS switching using an auxiliary switch and resonant circuit to improve the efficiency. in the DC-DC converter stage, it can reduce not only switching loss but also capacity and size of passive devices due to the resonant elements. DC-AC inverter stage supplies load with energy through the ZVS operation of 4 switches. A detail mode analysis of operating is in presented. We have presented the inverter topology, principle of operation and simulation results obtained from the PSIM simulator.

  • PDF

Optimal Design Methodology of Zero-Voltage-Switching Full-Bridge Pulse Width Modulated Converter for Server Power Supplies Based on Self-driven Synchronous Rectifier Performance

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.121-132
    • /
    • 2016
  • In this paper, high-efficiency design methodology of a zero-voltage-switching full-bridge (ZVS-FB) pulse width modulation (PWM) converter for server-computer power supply is discussed based on self-driven synchronous rectifier (SR) performance. The design approach focuses on rectifier conduction loss on the secondary side because of high output current application. Various-number parallel-connected SRs are evaluated to reduce high conduction loss. For this approach, the reliability of gate control signals produced from a self-driver is analyzed in detail to determine whether the converter achieves high efficiency. A laboratory prototype that operates at 80 kHz and rated 1 kW/12 V is built for various-number parallel combination of SRs to verify the proposed theoretical analysis and evaluations. Measurement results show that the best efficiency of the converter is 95.16%.

A New ZVS-PWM Full-Bridge Boost Converter

  • Baei, Mohammadjavad;Narimani, Mehdi;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Pulse-width modulated (PWM) full-bridge boost converters are used in applications where the output voltage is considerably higher than the input voltage. Zero-voltage-switching (ZVS) is typically implemented in these converters. A new ZVS-PWM full-bridge converter is proposed in this paper. The proposed converter does not have any of the disadvantages associated with other converters of this type, including a complicated auxiliary circuit, increased current stresses in the main power switches, and load-dependent ZVS operation. The operation of the proposed converter, its steady-state characteristics, and its design are explained and examined. The feasibility of the converter is confirmed with results obtained from an experimental prototype.

Analysis, Design and Implementation of an Interleaved DC/DC Converter with Series-Connected Transformers

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.643-653
    • /
    • 2012
  • An interleaved DC/DC converter with series-connected transformers is presented to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two half-bridge converter cells connected in series to reduce the voltage stress of the switches at one-half of the input voltage. The output sides of the two converter cells with interleaved pulse-width modulation are connected in parallel to reduce the ripple current at the output capacitor and to achieve load current sharing. Therefore, the size of the output chokes and the capacitor can be reduced. The output capacitances of the MOSFETs and the resonant inductances are resonant at the transition instant to achieve ZVS turn-on. In addition, the switching losses on the power switches are reduced. Finally, experiments on a laboratory prototype (24V/40A) are provided to demonstrate the performance of the proposed converter.

Feasibility Study of Distributed Auxiliary Resonant Commutation Snubber Linked Three Phase Voltage Source ZVS Inverter with Digital Servo Control Implementation

  • Hiraki, E.;Hattori, H.;Nakaoka, M.;Horiuchi, T.;Sugawara, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.341-345
    • /
    • 1998
  • This paper presents performance and loss analysis of Auxiliary Resonant Commutation Snubber-linked (ARCS) three phase voltage source soft switching inverter which is operated under a condition of Zero Voltage Switching (ZVS). The system performances of this ARCS soft switching inverter which is controlled on optimal type I digital servo scheme are illustrated and evaluated on the basis of experimental results.

  • PDF

Design and Development of a High-Voltage Transformer-less Power Supply for Ozone Generators Based on a Voltage-fed Full Bridge Resonant Inverter

  • Amjad, Muhammad;Salam, Zainal;Facta, Mochammad;Ishaque, Kashif
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.387-398
    • /
    • 2012
  • It is known that transformer based power supplies for ozone generators have low efficiency, high cost and exhibits a limited frequency range of operation. To overcome these disadvantages, this paper proposes a high frequency ozone generator with the absence of a transformer. The voltage step-up is achieved only by utilizing the resonant tank. This is made possible by a novel combination of ozone chamber materials that allow ozone to be generated at only 1.5 - 3.5 $kV_{p-p}$. The input to the resonant tank is driven by a PWM full bridge resonant inverter. Furthermore, zero-current zero-voltage switching (ZCZVS) operation is achieved by employing a duty factor of 25% between the switches of the full bridge. The advantages of the proposed system include high efficiency, low cost and the ability to control ozone production by varying the input voltage to the inverter. The prototype is verified by both simulation and experimental results.

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.

Analysis, Design and Implementation of an Improved ZVZCS-PWM Forward converter

  • Soltanzadeh, Karim;Dehghani, Majid;Khalilian, Hosein
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.197-204
    • /
    • 2014
  • In this paper an Improved Zero Voltage Zero Current Pulse Width Modulation Forward converter which employs a simple resonance snubber circuit is introduced. A simple snubber circuit consists of a capacitor, an inductor and two diodes. In proposed converter, switch Q1 operates at ZCS turn-on, and ZVS turn-off conditions and all-passive semiconductor devices operate at ZVZCS turn-on and turn-off state. The proposed converter is analyzed and various operating modes of the ZVZCS-PWM forward converter are discussed. Analysis and design considerations are presented and the prototype experimental results of a 100w (40 V/2.5A) proposed converter operating at 30 KHz switching frequency confirm the validity of theoretical analysis.

A New Soft-Switching Three-Level Flying Capacitor Converter (새로운 소프트스위칭 3레벨 Flying Capacitor 컨버터)

  • Kim, Jae-Hoon;Kim, Sun-Ju;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.484-489
    • /
    • 2020
  • This study proposes a new soft-switching three-level flying capacitor converter with low filter inductance. The proposed converter can achieve zero voltage switching (ZVS) turn-on of all switches by using auxiliary components La and Ca. It can also reduce filter inductance because the applied voltage of the filter inductor is decreased by using the flying capacitor. Furthermore, filter inductance can be reduced because the operating frequency of the filter inductor is doubled by the phase shifting between switches S3 and S4. The operation principle, design of passive components for ZVS turn-on, interleaving effects, and comparison of different topologies are presented. The experimental waveforms of a 1 kW two-phase interleaved converter prototype are provided to verify the validity of the proposed converter.