• Title/Summary/Keyword: zero-voltage-switching (ZVS)

Search Result 438, Processing Time 0.02 seconds

Novel ZVT Full Bridge PWM Boost Converter with Active Clamp for Single Stage Power Factor Correction (단일 전력단 역률보상을 위한 능동 클램프를 갖는 새로운 영전압 스위칭 풀 브릿지 PWM 컨버어터)

  • 조정구;김학성;백주원;정창용;송두익;유동욱;임근희
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.247-250
    • /
    • 1997
  • A novel zero-voltage-switching(ZVS) isolated PWM converter for single stage power factor correction (PFC) is presented to improve the performance of the previously presented ZVT converter[5]. A simple clamp circuit in the primary side provides zero-voltage-switching condition to all semiconductor devices. This ZVS is achieved with minimum device voltage and current stresses. Operation principle, control strategy and features of the proposed converter are presented and verified by the experimental results from a 1.5 ㎾, 100 KHz laboratory prototype

  • PDF

New Partial Resonant Zero Voltage Switching PWM High Frequency Inverter using Induction Heating (유도 가열용에 사용되어지는 새로운 부분공진형 영전압 스위칭 PWM 고주파 인버터)

  • Jung, Young-Su;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.261-266
    • /
    • 2015
  • This paper presents a newly proposed prototype of voltage-fed half-bridge partial resonant zero voltage switching PWM inverter operating at a constant frequency variable power regulation scheme, which is more suitable and acceptable for induction heated(IH) cooking appliances. This application-specific high frequency inverter circuit topology using a new generation specially-designed IGBTs can operate under a principle of a fixed frequency ZVS-PWM strategy. The operating principle of a new partial resonant inverter circuit is described on the basis of its computer-aided simulation analysis, its including steady-state operating characteristics.

Analysis of a Novel Soft Switching Bidirectional DC-DC Converter

  • Eom, Ju-Kyoung;Kim, Jun-Gu;Kim, Jae-Hyung;Oh, Soon-Tack;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.859-868
    • /
    • 2012
  • In this paper, a novel bidirectional DC-DC converter employing soft switching technique was proposed. Compare to conventional bidirectional converters, the main switches of proposed converter are operated without switching losses. Moreover, auxiliary switches are used, and the switches are operated under zero voltage switching (ZVS) and zero current switching (ZCS) condition. To verify the validity of the proposed converter, mode analysis, design procedure, simulation and experimental results are presented.

Zero-Voltage Zero-Current Switching Three Level DC/DC Converter (영전압.영전류 스위칭 3 레벨 DC/DC 컨버터)

  • 김은수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.682-690
    • /
    • 2002
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval.. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 7㎾, 30KHz experimental prototype.

ZVS Phase Shift Full Bridge Converter Design with 2kW Output (2 kW 출력을 갖는 영전압 스위칭 위상 천이 풀 브리지 컨버터 설계)

  • Hwang, Kyu-Il;Kim, Il-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.523-530
    • /
    • 2018
  • It has been studied over the long time for the high efficiency and high power density of the power converter. It is possible to obtain higher power conversion efficiency and small volume by increasing switching frequency, however, the switching loss is also increased. The soft switching technique can overcome of the above deficiency. The design and analysis method for ZVS(Zero Voltage Switching) Phase Shifte Full bridge converter is presented in this paper. The power transfer depends on the phase difference between two legs of the power stage and the maximum power conversion efficiency is achieved by the optimum leakage inductance value. The waveform of the current and voltage of the operational mode is analysed and the corresponding switch status is plotted as on/off status. A ZVS full bridge converter for a communication rectifier with 2kW output power is implemented and its performance are verified through PSIM software simulation and experimental results.

Analysis and Implementation of a DC-DC Converter with an Active Snubber

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.779-786
    • /
    • 2011
  • This paper presents a soft switching converter to achieve the functions of zero voltage switching (ZVS) turn-on for the power switches and dc voltage step-up. Two circuit modules are connected in parallel in order to achieve load current sharing and to reduce the size of the transformer core. An active snubber is connected between two transformers in order to absorb the energy stored in the leakage and magnetizing inductances and to limit the voltage stresses across the switches. During the commutation stage of the two complementary switches, the output capacitance of the two switches and the leakage inductance of the transformers are resonant. Thus, the power switches can be turned on under ZVS. No output filter inductor is used in the proposed converter and the voltage stresses of the output diodes is clamped to the output voltage. The circuit configuration, the operation principles and the design considerations are presented. Finally, laboratory experiments with a 340W prototype, verifying the effectiveness of the proposed converter, are described.

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

Analysis of a New Parallel Three-Level Zero-Voltage Switching DC Converter

  • Lin, Bor-Ren;Chen, Jeng-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.128-137
    • /
    • 2015
  • A novel parallel three-level zero voltage switching (ZVS) DC converter is presented for medium voltage applications. The proposed converter includes three sub-circuits connected in parallel with the same power switches to share load current and reduce the current stress of passive components at the output side. Thus, the size of the output chokes is reduced and the switch counts in the proposed converter are less that in the conventional parallel three-level DC/DC converter. Each sub-circuit combines one half-bridge converter and one three-level converter. The transformer secondary windings of these two converters are connected in series in order to reduce the size of output inductor. Due to the three-level circuit topology, the voltage stress of power switches is equal to $V_{in}/2$. Based on the resonant behavior by the output capacitance of power switches and the leakage inductance (or external inductance) at the transition interval, each switch can be turned on under ZVS. Finally, experiments based on a 2 kW prototype are provided to verify the performance of the proposed converter.

Design Consideration of Half-Bridge LLC Resonant Converter

  • Choi, Hang-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • LLC resonant converters display many advantages over the conventional LC series resonant converter such as narrow frequency variation over wide range of load and input variation and zero voltage switching even under no load conditions. This paper presents analysis and design consideration for the half bridge LLC resonant converter. Using the fundamental approximation, the gain equation is obtained, where the leakage inductance in the transformer secondary side is also considered. Based on the gain equation, the practical design procedure is investigated to optimize the resonant network for a given input/output specifications. The design procedure is verified through an experimental prototype of the 115W half-bridge LLC resonant converter.

Optimal Input Inductance Design of Wireless Power Transfer System with LCCL-S Topology for Zero Voltage Switching (LCCL-S 토폴로지를 적용한 무선전력전송 시스템의 ZVS를 위한 입력 인덕턴스 최적 설계)

  • Byun, Jongeun;Joo, Dong-Myoung;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.114-115
    • /
    • 2017
  • 본 논문에서는 무선전력전송 시스템이 전 부하 영역에서 ZVS (Zero voltage switching)하기 위한 LCCL-S 토폴로지 입력 인덕턴스 최적 설계 방법을 제안한다. 결합계수 및 부하에 따른 입력전류를 분석하고, 설계 조건을 도출한다. 도출한 설계조건을 PSIM 시뮬레이션을 통해 검증한다.

  • PDF