• Title/Summary/Keyword: zero energy modes

Search Result 44, Processing Time 0.028 seconds

Analysis and Design of a New Topology of Soft-Switching Inverters

  • Chen, Rong;Zhang, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • This paper proposes the power conversion mechanism of a bailer-charge-transfer zero-current-switching (CT-ZCS) circuit. The operation modes are analyzed and researched using state trajectory equations. The topology of CT-ZCS based on soft-switching inverters offers some merits such as: tracking the input reference signal dynamically, bearing load shock and short circuit, multiplying inverter N+1 redundancy parallel, coordinating power balance for easy control, and soft-switching commutation for high efficiency and large capacity. These advantages are distinctive from conventional inverter topologies and are especially demanded in AC drives: new energy generation and grid, distributed generation systems, switching power amplifier, active power filter, and reactive power compensation and so on. Prototype is manufactured and experiment results show the feasibility and dynamic voltage-tracking characteristics of the topology.

Improved ZVT(Zero Voltage Transition) Boost Converter (개선된 ZVT 부스트 컨버터)

  • Lee Il-Oun;Lee Dong-Young;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.673-676
    • /
    • 2001
  • In this paper, the improved zero-voltage transition(ZVT) PWM boost converter using an inductor feedback technique is proposed. The improved circuit uses a low-voltage zener diode to reduce the turn-off witching loss of the auxiliary witch and EMI noise. Using this technique, soft-witching for the auxiliary switch is guaranted at wide line and load ranges and some of the energy circulating in the auxiliary circuit is fed to the load Since the active switches are turned on and off softly, the witching losses and EMI noise are reduced significantly and the higher efficiency of the system is achieved. In this paper, the modes of converter operation are explained and analyzed, design guidelines are given, and experimental results of 1kW, 100kHz prototype system are presented.

  • PDF

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

Two-dimensional nonconforming finite elements: A state-of-the-art

  • Choi, Chang-Koon;Kim, Sun-Hoon;Park, Young-Myung;Chung, Keun-Young
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-61
    • /
    • 1998
  • A state-of-the-art report on the new finite elements formulated by the addition of nonconforming displacement modes has been presented. The development of a series improved nonconforming finite elements for the analysis of plate and shell structures is described in the first part of this paper. These new plate and shell finite elements are established by the combined use of different improvement schemes such as; the addition of nonconforming modes, the reduced (or selective) integration, and the construction of the substitute shear strain fields. The improvement achieved may be attributable to the fact that the merits of these improvement techniques are merged into the formation of the new elements in a complementary manner. It is shown that the results obtained by the new elements give significantly improved solutions without any serious defects such as; the shear locking, spurious zero energy mode for the linear as well as nonlinear benchmark problems. Recent developments in the transition elements that have a variable number of mid-side nodes and can be effectively used in the adaptive mesh refinement are presented in the second part. Finally, the nonconforming transition flat shell elements with drilling degrees of freedom are also presented.

Development of 4-node Plate Bending Element using Nonconforming Displacement Modes (비적합 변위모드를 이용한 4절점 평판휨요소의 개발)

  • 박용명;최창근
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.179-188
    • /
    • 1997
  • A 4-node element for efficient finite element analysis of plate bending is presented in this paper. This element is formulated based on Mindlin plate theory to take account of shear deformation. To overcome the overestimation of shear stiffness in thin Mindlin plate element, especially in the lower order element, five nonconforming displacement modes are added to the original displacement fields. The proposed nonconforming element does not possess spurious zero-energy mode and does not show shear locking phenomena in very thin plate even for distorted mesh shapes. It was recognized from benchmark numerical tests that the displacement converges to the analytical solutions rapidly and the stress distributions are very smooth. The element also provides good results for the case of high aspect ratio.

  • PDF

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

Studies on Flowfields Around Axisymmetric Bodies in the Rarefied Gas Regime Using the Direct Simulation Monte Carlo Method (희박기체영역에서의 직접모사법에 의한 축대칭 형상 주위의 유동장 해석에 관한 연구)

  • Lee Dong-Dae;Park Hyeong-Gu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.71-77
    • /
    • 1998
  • In this study we calculated the flowfields around the axisymmetric bodies in the rarefied gas regime by using the DSMC. A flat-ended cylinder was selected as a representative axisymmetric body and the gas used for all calculations was nitrogen. With zero angle of attack, an increasingly rapid rise in density and the effect of shock waves near the flat-ended face were examined. And on the cylinder surface velocity slips and boundary layers could be observed in the results. Larsen-Borgnakke model was used for the energy redistribution in inelastic collisions. And by considering all internal energy modes, the distributions of translational, rotational and vibrational temperatures were plotted. The calculations were peformed for various Knudsen numbers, Especially the rotational temperatures calculated for a case were compared with the experimental results. And the simulation results show good agreements with the experimental ones.

  • PDF

Magnetic Coupled ZVT PWM Boost PFC Pre-regulator (에너지 회생 변압기를 사용한 영전압 과도상태(ZVT) 부스트 역률보상 회로)

  • Yang Joon-Hyun;Lee Dong-Young;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.548-551
    • /
    • 2001
  • A zero-voltage transition (ZVT) PWM boost PFC converter using a transformer to recover the resonant energy into the input voltage is proposed. The proposed converter reduces turn-off switching loss of the auxiliary switch. The resonant current of the auxiliary circuit is optimally reduced by the feed-forwarded input voltage. Moreover, the resonant energy of the auxiliary circuit is recovered into the load and input voltages. In this paper, the modes of converter operation are explained and analyzed, design guidelines are given, and experimental results of 1.2kW, 200kHz prototype system are presented.

  • PDF

Performance of Multi-level Inverter for High-Speed SR Drive (SRM의 고속운전을 위한 새로운 멀티레벨 인버터의 구동특성)

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • In this paper, a novel multi-level inverter for low cost high speed switched reluctance(SR) drive is proposed. The proposed multi-level converter has reduced number of power switches and diodes than that of a conventional asymmetric converter for SRM and smaller voltage rating of the dump capacitor comparing with energy efficient c-dump converter. It can supply five operating modes that is boosted, DC-link, zero, negative bias and negative boosted voltage. The proposed multi-level converter has fast excitation and demagnetization modes of phase current, so dynamic response can be achieved. The proposed multi-level converter is verified by computer simulation and experimental results.

Novel Single Switch DC-DC Converter for High Step-Up Conversion Ratio

  • Hu, Xuefeng;Gao, Benbao;Huang, Yuanyuan;Chen, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.662-671
    • /
    • 2018
  • This paper presents a new structure for a step up dc-dc converter, which has several advantageous features. Firstly, the input dc source and the clamped capacitor are connected in series to transfer energy to the load through dual voltage multiplier cells. Therefore, the proposed converter can produce a very high voltage and a high conversion efficiency. Secondly, a double voltage clamped circuit is introduced to the primary side of the coupled inductor. The energy of the leakage inductance of the coupled inductor is recycled and the inrush current problem of the clamped circuits can be shared equally by two synchronous clamped capacitors. Therefore, the voltage spike of the switch tube is solved and the current stress of the diode is reduced. Thirdly, dual voltage multiplier cells can absorb the leakage inductance energy of the secondary side of the coupled inductor to obtain a higher efficiency. Fourthly, the active switch turns on at almost zero current and the reverse-recovery problem of the diodes is alleviated due to the leakage inductance, which further improves the conversion efficiency. The operating principles and a steady-state analysis of the continuous, discontinuous and boundary conduction modes are discussed in detail. Finally, the validity of this topology is confirmed by experimental results.