• Title/Summary/Keyword: zeolite paper

Search Result 58, Processing Time 0.022 seconds

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Quality Characteristics of Unshiu Orange and Pear Packaged with Paper Incorporated with Antimicrobial Agents (항균소재를 함유한 포장재로 포장한 밀감과 배의 저장중 품질 특성 변화)

  • Park, Woo-Po;Jung, Jun-Ho;Cho, Sung-Hwan;Kim, Chul-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1715-1719
    • /
    • 2004
  • In order to help the preservation of the unshiu orange and pear, antimicrobial paper incorporating grapefruit seed extract and zeolite was applied to pack fruits. Unshiu orange was packed in a box (24${\times}$24${\times}$22 cm) attached with antimicrobial paper and then stored respectively at l$0^{\circ}C$. Pears were wrapped individually before storage at l$0^{\circ}C$. During the storage, weight loss, pH, total acidity, soluble solid content, microbial load and decay were measured as quality indices. Steady pH increase in unshiu orange was observed to slightly decrease total acidity during the storage with little difference between the packaging treatments. The microbial loads of total aerobic bacteria, and yeast/mold counts were suppressed during storage by the antimicrobial paper packaging, which also contributed to reducing the decayed unshiu orange. Limited reduction of total aerobic bacteria and yeast/mold counts was observed only for initial storage period for the pears wrapped with 9 and 12% antimicrobial agent-added papers. Antimicrobial paper was useful for the reduction of microbial load in unshiu orange and pear without other quality deterioration.

Quality Characteristics of Cherry Tomatoes Packaged with Paper Bag Incorporated with Antimicrobial Agents (항균소재를 함유한 포장재에 의한 방울토마토의 저장중 품질 특성 변화)

  • Park, Woo-Po;Cho, Sung-Hwan;Kim, Chul-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1381-1384
    • /
    • 2004
  • In order to help the preservation of the cherry tomatoes, antimicrobial paper incorporating grapefruit seed extract and zeolite was applied to packaging fruits. The fruits were packed with a paper bag of 15.5${\times}$24 cm and then stored at 1$0^{\circ}C$. During the storage, weight loss, pH, total acidity, soluble solid content, microbial load and decay were measured as quality indices. Steady weight loss due to the transpiration was observed to slightly increase the solid content during the storage with little difference between the packaging treatments. There were little change in pH and acidity of the stored fruits. The microbial loads of total aerobic bacteria, and yeast/mold counts were significantly suppressed during 10 day storage by the antimicrobial paper packaging, which also contributed to reducing the decayed fruits observed after 15 days.

A Study on Investigation for Effectiveness of Natural Minerals with Silica-Component as Admixture for Concrete

  • 김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.201-214
    • /
    • 1994
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Mahmood, Shaid;Safeer, Muhammad;Al Naim, Abdullah F.;Ahmad, Manzoor
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.81-88
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Quality Characteristics of Cherry Tomato and Unshiu Orange Packaged with Box Incorporated with Antimicrobial Agents (항균소재 함유 박스로 포장한 방울토마토와 밀감의 저장중 품질 특성)

  • Park Woo-Po;Kim Chul-Hwan;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2006
  • In order to help the preservation of the cherry tomato and unshiu orange, antimicrobial paper incorporating grapefruit seed extract and zeolite was applied to the package. Cherry tomato and unshiu orange were packed in a box (38x25x20 cm) attached with antimicrobial paper and then stored respectively at $5^{\circ}C$. During the storage, weight loss, pH total acidity, soluble solid content microbial load and decay ratio were measured as quality indices. pH increase in cherry tomato was observed until 20 days, and decreased with litle difference between the packaging treatments thereafter pH and total acidity decrease in unshiu orange were shown till 30 days, and abrupt change was revealed by 40 days. This was due to physiological disorders. The microbial loads of total aerobic bacteria, and yeast/mold count were suppressed during storage by the box packaging incorporated with antimicrobial agents, which also contributed to reducing the decayed cherry tomato and unshiu orange. Antimicrobial paper was useful fur the reduction of microbial load in cherry tomato and unshiu orange pear without other quality deterioration.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.