• Title/Summary/Keyword: zebrafish embryos

Search Result 68, Processing Time 0.02 seconds

Effects of the Particulate Matter2.5 (PM2.5) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity

  • Kim, Jae-Yong;Lee, Eun-Young;Choi, Inho;Kim, Jihoe;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1096-1104
    • /
    • 2015
  • Particulate $matter_{2.5}$ ($PM_{2.5}$) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which $PM_{2.5}$ aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous $PM_{2.5}$ solution on lipoprotein metabolism. Collected $PM_{2.5}$ from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. $PM_{2.5}$ extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. $PM_{2.5}$ treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by $PM_{2.5}$ solution in a dose-dependent manner. Further, $PM_{2.5}$ solution caused cellular senescence in human dermal fibroblast cells. Microinjection of $PM_{2.5}$ solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of $PM_{2.5}$ induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.

Anti-oxidative and protective effects of Arthrospira platensis ethanol extracts on zebrafish ROS Induced by UVB Induction (UVB 로부터 ROS를 유도한 제브라피쉬에 스피룰리나 에탄올 추출물의 항산화 및 보호효과에 관한 연구)

  • Jang, Deok-Young;Han, Young-Seok;Yang, Jae-Chan;Kim, Bo-Ae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.423-432
    • /
    • 2018
  • Arthrospira platensis is one of the oldest algae in the world and has been reported to have anti-aging properties, including phycocyanin, tocopherol and beta-carotene. In this study, we tried to search protective activities against UVB-induced reactive oxygen species(ROS) of Arthrospira platensis under indoor cultivation ethanol extracts(ICAE) and outdoor cultivation ethanol extracts(OCAE). The anti-oxidative capacities were evaluated by DPPH radical scavenging activity and SOD-like activities at various concentrations(0.1, 0.5, $1mg/m{\ell}$) of ICAE and OCAE. Zebrafish embryos and HaCaT cells were exposed to UVB radiation and treated with various concentrations(0, 0.01, 0.05, 0.1, 0.5, $1mg/m{\ell}$) of ICAE and OCAE. ROS levels of zebrafish and HaCaT cells were generated by UVB radiation. ROS levels were detected using a fluorescent microscope after DCFH-DA staining. The DPPH radical scavenging activity of ascorbic acid was 73% and SOD-like activity was 86% in the positive control group. ICAE and OCAE at $1mg/m{\ell}$ concentration showed 43, 57% DPPH radical scavenging activity and 20, 19% SOD-like activity. Anti-oxidative of ICAE and OCAE had lower effects than the positive control ascorbic acid but significant results. ROS of UVB-induced zebrafish embryos and HaCaT cells were higher than negative control. ICAE and OCAE treated group decreased ROS concentration dependently than UVB-induced positive control group. These results suggest that Arthrospira platensis ethanol extract may have usability value as a cosmetic material for skin protection.

Effects of polygalacin D extracted from Platycodon grandiflorum on myoblast differentiation and muscle atrophy (길경에서 추출한 polygalacin D가 근원세포 분화 및 근위축에 미치는 영향)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Eonmi Kim;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.602-614
    • /
    • 2023
  • Purpose: The balance between synthesis and degradation of proteins plays a critical role in the maintenance of skeletal muscle mass. Mitochondrial dysfunction has been closely associated with skeletal muscle atrophy caused by aging, cancer, and chemotherapy. Polygalacin D is a saponin derivative isolated from Platycodon grandiflorum (Jacq.) A. DC. This study aimed to investigate the effects of polygalacin D on myoblast differentiation and muscle atrophy in association with mitochondrial function in in vitro and in zebrafish models in vivo. Methods: C2C12 myoblasts were cultured in differentiation media containing different concentrations of polygalacin D, followed by the immunostaining of the myotubes with myosin heavy chain (MHC). The mRNA expression of markers related to myogenesis, muscle atrophy, and mitochondrial function was determined by real-time quantitative reverse transcription polymerase chain reaction. Wild type AB* zebrafish (Danio rerio) embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without polygalacin D, and immunostained to detect slow and fast types of muscle fibers. The Tg(Xla.Eef1a1:mitoEGFP) zebrafish expressing mitochondria-targeted green fluorescent protein was used to monitor mitochondrial morphology. Results: The exposure of C2C12 myotubes to 0.1 ng/mL of polygalacin D increased the formation of MHC-positive multinucleated myotubes (≥ 8 nuclei) compared with the control. Polygalacin D significantly increased the expression of MHC isoforms (Myh1, Myh2, Myh4, and Myh7) involved in myoblast differentiation while it decreased the expression of atrophic markers including muscle RING-finger protein-1 (MuRF1), mothers against decapentaplegic homolog (Smad)2, and Smad3. In addition, polygalacin D promoted peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α) expression and reduced the level of mitochondrial fission regulators such as dynamin-1-like protein (Drp1) and mitochondrial fission 1 (Fis1). In a zebrafish model of FOLFIRI-induced muscle atrophy, polygalacin D improved not only mitochondrial dysfunction but also slow and fast muscle fiber atrophy. Conclusion: These results demonstrated that polygalacin D promotes myogenesis and alleviates chemotherapy-induced muscle atrophy by improving mitochondrial function. Thus, polygalacin D could be useful as nutrition support to prevent and ameliorate muscle wasting and weakness.

Evaluation on Anticancer Effect Against HL-60 Cells and Toxicity in vitro and in vivo of the Phenethyl Acetate Isolated from a Marine Bacterium Streptomyces griseus

  • Lee, Ji-Hyeok;Zhang, Chao;Ko, Ju-Young;Lee, Jung-Suck;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • We previously identified Streptomyces griseus as an anti-cancer agent (Kim et al., 2014). In this study, we isolated compounds from S. griseus and evaluated their anticancer effect and toxicity in vitro and in vivo. Preparative centrifugal partition chromatography (CPC) was used to obtain three compounds, cyclo($_{\small{L}}$-[4-hydroxyprolinyl]-$_{\small{L}}$-leucine], cyclo($_{\small{L}}$-Phe-trans-4-hydroxy-$_{\small{L}}$-Pro) and phenethyl acetate (PA). We chose PA, which had the highest anticancer activity, as a target compound for further experiments. PA induced the formation of apoptotic bodies, DNA fragmentation, DNA accumulation in $G_0/G_1$ phase, and reactive oxygen species (ROS) formation. Furthermore, PA treatment increased Bax/Bcl-xL expression, activated caspase-3, and cleaved poly-ADP-ribose polymerase (PARP) in HL-60 cells. Simultaneous evaluation in vitro and in vivo, revealed that PA exhibited no toxicity in Vero cells and zebrafish embryos. We revealed, for the first time, that PA generates ROS, and that this ROS accumulation induced the Bcl signaling pathway.

Effect of Tributyltin Chloride on Survival, Growth and Reproduction in Zebra Fish Danio rerio

  • Balasubramani, A.;Pandian, T.J.
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.146-156
    • /
    • 2008
  • Tributyltin chloride(TBTCl) was administered through discrete immersion(2 hr each) from the $18^{th}-25^{th}$ day after hatching(dph). At the doses of 1, 2, 4 and 8 ${\mu}g/L$, the immersion at 2 ${\mu}g/L$ ensured 93% masculinization and the highest survival of 75% after the treatment. TBTCl acted as a growth suppressant and the magnitude of its suppression was stronger in females. During the 300 day experiment, it postponed sexual maturity of females from 120$^{th}$ dph in the control to 240$^{th}$ dph in the females treated at 8 ${\mu}g/L$. It reduced spawning frequency(22-3 times) and cumulative fecundity(1,632-19 eggs) by reducing the number of vitellogenic eggs. In the treated males too, it reduced sperm motility(100-68 sec); consequently, fertilizability of the sperm cells drawn from these males was also reduced from 88 to 43%. Progeny testing showed that the cross between males treated at>2 ${\mu}g/L$ and normal females generated the presumed 'homogametic' males. Both the treated 'homogametic' and 'heterogametic' males could induce the females to spawn fewer eggs than that of the normal males. A normal female somehow deducted the differences between the control, treated and sex reversed males; it preferred a normal male over a treated one, and a treated one over the sex reversed male.

The Regulatory Region of Muscle-Specific Alpha Actin 1 Drives Fluorescent Protein Expression in Olive Flounder Paralichthys olivaceus

  • Kong, Hee Jeong;Kim, Julan;Kim, Ju-Won;Kim, Hyun-Chul;Noh, Jae Koo;Kim, Young-Ok;Kim, Woo-Jin;Yeo, Sang-Yeob;Park, Jung Youn
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.55-61
    • /
    • 2019
  • To develop a promoter capable of driving transgene expression in non-model fish, we identified and characterized the muscle-specific alpha-actin gene in olive flounder, Paralichthys olivaceus (PoACTC1). The regulatory region of PoACTC1 includes putative regulatory elements such as a TATA box, two MyoD binding sites, three CArG boxes, and a CCAAT box. Microinjection experiments demonstrated that the regulatory region of PoACTC1, covering from -2,126 bp to +751 bp, just prior to the start codon, drove the expression of red fluorescent protein in developing zebrafish embryos and hatching olive flounder. These results suggest that the regulatory region of PoACTC1 may be useful in developing a promoter for biotechnological applications such as transgene expression in olive flounder.

Depigmenting Effects of Mistletoe (Viscum album var. coloratum) Extracts (겨우살이 추출물의 미백 효과)

  • Hah, Young-Sool;Kim, Eun-Ji;Goo, Young Min;Kil, Young Sook;Sin, Seung Mi;Kim, Sang Gon;Kang, Ha Eun;Yoon, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.355-361
    • /
    • 2022
  • Melanin pigments are the main cause of skin color. They are produced in melanocytes and then transferred to keratinocytes, which eventually gives the skin surface a variety of colors. Although many skin-lightening or depigmenting agents have been developed, the demand for materials to reduce pig- mentation is still increasing. Here, we tried to find materials for skin-lightening or depigmentation using natural compounds and found that mistletoe (Viscum album var. coloratum) extracts (ME) had an inhibitory effect on tyrosinase activity. As a result, ME significantly reduced pigmentation in human primary melanocytes. In addition, a promoter reporter assay revealed that ME inhibited the transcription of microphthalmia-associated transcription factor (MITF), melanophilin (MLPH), tyrosinase-related protein-2 (TRP-2), and tyrosinase (TYR) genes in HM3KO melanoma cells. In addition, ME decreased the protein level for pigmentation-related molecules, such as TYR and TRP-1. Furthermore, it markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. To elucidate the action mechanism of ME, we investigated its effects on intracellular signaling. Eventually, the ME dramatically decreased the phosphorylation of the cAMP responsive element binding protein (CREB), AKT, and ERK. The data suggest that ME may inhibit the melanogenesis pathway by regulating the signaling pathway related to pigmentation. Taken together, these data propose that ME can be developed as a depigmenting or skin-lightening agent.

Evaluation of skin improvement efficacy of herbal medicine extracts on skin keratinocytes stimulated with fine dust PM10 (미세먼지 PM10으로 손상을 유도한 피부각질형성세포에서 한약재 추출물의 피부 개선 효능 평가)

  • Dong-Hee Kim;Yun Hwan Kang;Bo-Ae Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.856-867
    • /
    • 2023
  • Due to the increase in fine dust caused by environmental pollution, oxidative damage and aging of the skin are accelerated. In this study, the antioxidant, hyaluronic acid, filaggrin, MMP-1, and ROS level of selected herbal extracts were evaluated to confirm the protective efficacy of keratinocytes treated PM10. As a result, the antioxidant capacity of 1,1-diphenyl-2-picrylhydrazyl(DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid(ABTS), and FRAP assay increased in a concentration-dependent manner. Keratinocytes the group treated with 300 ㎍/ml of PM10, hyaluronic acid and filaggrin decreased by more than 50%, and increased in the group treated with extracts of Alpinia officinarum, Ulmus macrocarpa, and Ulmus macrocarpa but decreased when the extract was treated, which is evaluated as inhibiting the degradation of collagen and elastin. In addition, in the case of ROS measurement using zebrafish embryos, it was confirmed that the extract was reduced when the extract was treated 25 ㎍/ml, the intensity of fluorescence similar to the negative control was shown, confirming that the production of ROS was significantly reduced. Through this study, the selected oriental medicinal materials, Alpinia officinarum, Ulmus macrocarpa, and Ulmus macrocarpa, protect the skin from fine dust. It is thought that it can be used as an anti-aging product for skin improvement as a material that can be improved or improved.