• 제목/요약/키워드: young concrete

검색결과 4,007건 처리시간 0.029초

차수벽 콘크리트의 섬유보강 및 팽창제 혼입에 따른 소성수축균열 제어특성에 관한 실험적 연구 (An Experimental Study on Plastic Shrinkage of fiber and Expansive Additive for Face Slab Concrete)

  • 김완영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.679-682
    • /
    • 2005
  • The effects of substituting cement with fiber addition(poly vinyl alcohol), fly ash and Expansive Additive on the control of microcrack and enhanced durability performance of face slab concrete in concrete-faced rockfill dam was studied experimentally The laboratory test results shown that the mixture of fiber containing concrete and of fly ash replacement of concrete to be more effective than expansive additive concrete in the crack control and mechanical performance.

  • PDF

PC부재의 생산계획 수립에 영향을 미치는 요인 고찰에 관한 연구 (A Study on the Consideration for Factors Affecting Production Plan Establishment of Precast Concrete Members)

  • 전영훈;신은영;윤원건;김경훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.253-254
    • /
    • 2023
  • The production plan of Precast Concrete members is closely related to the assembly plan of Precast Concrete members, and is an important management factor for the process planning of Precast Concrete construction. This may cause a delay in the construction period due to manufacturing errors occurring in the production process of members and transportation errors according to the production sequence. Therefore, it is necessary to have an efficient production plan for Precast Concrete members that can produce the necessary quantity from the point of assembly of the members and supply them in a timely manner. This study is a basic study for establishing a production plan for Precast Concrete members, and the purpose of the study is to examine the factors that affect the establishment of a production plan for Precast Concrete members. In this study, the influencing factors according to the production method and conditions when establishing a production plan for Precast Concrete members were considered. In the future, correlation analysis among influencing factors will be carried out, and it is expected that it will be used as basic data for schedule management of Precast Concrete construction and derivation of construction period calculation standards.

  • PDF

응력파 기반 비파괴 검사법에 의한 콘크리트 강도 추정에 관한 연구 (A Study Using Nondestructive Tests Based on Stress Waves for the Estimation of Concrete Compressive Strength)

  • 주현지;조영상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.675-678
    • /
    • 2004
  • The importance of predicting concrete compressive strength of in concrete structures is gradually increasing in construction industry. The estimation of concrete compressive strength of is a critical factor of the construction schedule and quality control. This study was performed to examine the relationship between concrete compressive strength and stress wave velocity which was determined by the impact echo method and SASW method.

  • PDF

진동이 양생중인 콘크리트에 미치는 영향에 관한 연구 (An Experimental Study on the Effects of Early-Age Vibrations on the Properties of Concrete)

  • 오병환;송혜금;조재열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.531-537
    • /
    • 1998
  • Recently, the pile driving or blasting works are increasingly done in many areas to perform large scale construction projects. The vibrations from these blasting works may affect the properties of concrete, especially young concrete. The purpose of present study is to explore the effects of vibration at early ages on the properties of concrete. To this end, comprehensive experimental study is conducted in the present study. The major test variables are peak particle velocity or vibration velocity and the age at vibration. The compressive strengths and bond strengths are measured for all the specimens at 28days after casting. The duration of vibration is fixed to 30 minutes for all cases. The results indicate that the strength increases for vibration velocity less than about 0.25cm/sec and decreases for vibration velocity larger than 0.5cm/sec. The effect of age at vibration is not pronounced and shows almost similar behavior for the age at vibration of 0 to 12 hours range. The present study provides some important guidelines to control the construction or vehicle vibrations for the concrete at very early ages.

  • PDF

수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 역학적 특성 및 내구성능 평가 (Mechanical and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure)

  • 원종필;이재영;박찬기;성상경;김완영
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.35-41
    • /
    • 2007
  • The most agricultural concrete structures for the irrigation and drainage are exposed to the underwater condition at the irrigation period and they take the influence on very severe cold in the winter. Therefore, it is impossible to use repair materials used to the general concrete structures. The research need the development of the repair material for a performance enhance of the agricultural underwater concrete structures. This research evaluated the mechanical and durability performance of the latex modified repair mortar for underwater concrete structures which peformed the repair in the underwater according to the characteristic of the agricultural concrete structure. The latex modified repair mortar is a material that minimize the effect of the ecosystem, environment and the segregation. In this research, the construction condition of the latex modified repair mortar for agricultural concrete structures was considered and the test specimens made in the underwater condition. Test results was then compared with target performance and commercial repair mortar. Experimental test results indicated that the mechanical and durability performance of latex modified repair mortar for agricultural underwater concrete structure satisfied all target performance. Also, the latex modified repair mortar resulted in better repair performance than the commercial repair mortar.

배합수량 변동에 따른 콘크리트의 경화성상 및 내구성에 관한 연구 (A Study on Hardened Properties and Durability of Concrete according to Unit-Water Content)

  • 구경모;임창혁;이의배;김영선;김영선;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.45-48
    • /
    • 2009
  • The performance of concrete mainly depend upon its water-cement ratio. If water percentage is excess in concrete, it may cause the degradation of performance. Because of these reasons, the change of water content is managed by using various evaluation method of unit water content. And criterion for the change of water content is regulated and used. However the criterion is set only considering production error and measurement error but criterion does not consider performance degradation of concrete. Therefore this study tries to investigate degradation of performance while adding extra water by artificial manipulation or management error in concrete, The contents of extra water for tests are set as 0, 20, 40, 60kg/m3, to examine the performance degradation of concrete, strength, shrinkage, cracks, carbonation are tested This study conclude that, when extra water content is excess than 20kg/m3 in concrete, then performance level of concrete declined rapidly. 80 it is very important to maintain quality of concrete for its better performance.

  • PDF

A Proposal of an Elastic Modulus Equation for High-Strength and Ultra High-Strength Concrete

  • Jang, II-Young;Park, Hoon-Kyu;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents an elastic modulus equation more appropriate for predicting the elastic modulus of structural materials designed for and made of high- and ultra high-strength concrete under current domestic situation in Korea. In order to validate and assess the proposed elastic modulus equation, more than 400 laboratory test data available in the domestic literature on compressive strength of concrete in the range between 400 to 1,000 $kgf/cm^2$ were used and analyzed statistically. Comparison analyses of the proposed elastic modulus equation with previously suggested equations of ACI363R, CEB-FIP, NS3473 and New-RC are also presented to demonstrate its applicability in domestic practice.