• 제목/요약/키워드: young's Laplace equation

검색결과 4건 처리시간 0.015초

라플라스 모세관이론과 수학물리학의 태동 (Theory of Capillarity of Laplace and birth of Mathematical physics)

  • 이호중
    • 한국수학사학회지
    • /
    • 제21권3호
    • /
    • pp.1-30
    • /
    • 2008
  • 뉴턴의 중력이론의 성공은 수학물리학을 태동시키는 바, 최초로 19세기 초의 분자력의 모델성립에 중요한 요소로 등장하였다. 라플라스는 여기서 회전타원체의 작용이라는 모델을 이용하였고 회전타원체의 작용은 이계편미분방정식으로 표현이 되었다. 이것을 풀어서 유체를 담은 용기의 기하학적 모습과 와 유체와 고체의 접촉각에 대응시켰다. 알 수 없는 분자간거리는 추상적이고 미지의 힘 함수 $\varphi(f)$를 써서 표현하여, 분자 작용반경이라는 개념을 도입하여 이론적인 포텐셜 함수의 이론적인 토대를 구축하였다. 뉴턴의 중력이론은 라플라스이론에서 완성을 이루었고, 이후 분자력의 모델로서 작용을 하였다. 라플라스-영의 모세관이론은 수학적으로는 극소 곡면론에서 물리학적으로는 표면장력현상으로 설명이 된다.

  • PDF

Frequency Response Analysis of Cylindrical Shells Conveying Fluid Using Finite Element Method

  • Seo Young-Soo;Jeong Weui-Bong;Yoo Wan-Suk;Jeong Ho-Kyeong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.625-633
    • /
    • 2005
  • A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the Sanders' theory and the fluid in cylindrical shell is considered as inviscid and incompressible so that it satisfies the Laplace's equation. A beam-like shell element is used to reduce the number of degrees-of-freedom by restricting to the circumferential modes of cylindrical shell. An estimation of frequency response function of the pipe considering of the coupled effects of the internal fluid is presented. A dynamic coupling condition of the interface between the fluid and the structure is used. The effective thickness of fluid according to circumferential modes is also discussed. The influence of fluid velocity on the frequency response function is illustrated and discussed. The results by this method are compared with published results and those by commercial tools.

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • 제15권3호
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

유한요소법을 이용한 파랑 중 선박운동의 시간영역 해석기법 개발 (Time Domain Analysis of Ship Motion in Waves Using Finite Element Method)

  • 남보우;성홍근;홍사영
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.16-23
    • /
    • 2009
  • The three-dimensional ship motion with forward speed was solved by a finite element method in the time domain. A boundary value problem was described in the frame of a fixed-body reference, and the problem was formulated according to Double-Body and Neumann-Kelvin linearizations. Laplace's equation with boundary conditions was solved by a classical finite element method based on the weak formulation. Chebyshev filtering was used to get rid of an unwanted saw-tooth wave and a wave damping zone was adopted to impose a numerical radiation condition. The time marching of the free surface was performed by the 4th order Adams-Bashforth-Moulton method. Wigley I and Wigely III models were considered for numerical validation. The hydrodynamic coefficients and wave exciting forces were validated by a comparison with experimental data and the numerical results of the Wigley I. The effects of the linearization are also discussed. The motion RAO was also checked with a Wigley III model through mono-chromatic and multi-chromatic regular waves.