• Title/Summary/Keyword: yielding sequence

Search Result 40, Processing Time 0.026 seconds

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

Assessment of solid components of borderline ovarian tumor and stage I carcinoma: added value of combined diffusion- and perfusion-weighted magnetic resonance imaging

  • Kim, See Hyung
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.3
    • /
    • pp.231-240
    • /
    • 2019
  • Background: We sought to determine the value of combining diffusion-weighted (DW) and perfusion-weighted (PW) sequences with a conventional magnetic resonance (MR) sequence to assess solid components of borderline ovarian tumors (BOTs) and stage I carcinomas. Methods: Conventional, DW, and PW sequences in the tumor imaging studies of 70 patients (BOTs, n=38; stage I carcinomas, n=32) who underwent surgery with pathologic correlation were assessed. Two independent radiologists calculated the parameters apparent diffusion coefficient (ADC), $K^{trans}$ (vessel permeability), and $V_e$ (cell density) for the solid components. The distribution on conventional MR sequence and mean, standard deviation, and 95% confidence interval of each DW and PW parameter were calculated. The inter-observer agreement among the two radiologists was assessed. Area under the receiver operating characteristic curve (AUC) and multivariate logistic regression were performed to compare the effectiveness of DW and PW sequences for average values and to characterize the diagnostic performance of combined DW and PW sequences. Results: There were excellent agreements for DW and PW parameters between radiologists. The distributions of ADC, $K^{trans}$, and $V_e$ values were significantly different between BOTs and stage I carcinomas, yielding AUCs of 0.58 and 0.68, 0.78 and 0.82, and 0.70 and 0.72, respectively, with ADC yielding the lowest diagnostic performance. The AUCs of the DW, PW, and combined PW and DW sequences were $0.71{\pm}0.05$, $0.80{\pm}0.05$, and $0.85{\pm}0.05$, respectively. Conclusion: Combining PW and DW sequences to a conventional sequence potentially improves the diagnostic accuracy in the differentiation of BOTs and stage I carcinomas.

IDENTIFICATION OF THE AG I/II AND GTFD GENES FROM STREPTOCOCCUS MUTANS GS-5 (연쇄상구균 GS-5의 ag I/II와 gtfD 유전자 클로닝)

  • Jeong, Jin-Woo;Baik, Byeong-Ju;Yang, Yeon-Mi;Seo, Jeong-Ah;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.357-369
    • /
    • 2005
  • Streptococci are Gram-positive, facultative anaerobes and have no catalase activities. Among mutans streptococci containing ${\alpha}-type$ hemolytic activity, S. mutans is a causative agent for dental caries. As well as acid production yielding the demineralization of tooth enamel, adherence and colonization of S. mutans to the teeth are also important for its virulence. These early colonization are accomplished by the bacterial fibrillar protein, Antigen I/II (Ag I/II) and glucosyltransferase (GTF). Therefore, Ag I/II and GTF are reasonable targets for the development of vaccine against S. mutans GS-5. The ag I/II and gtfD genes from S. mutans GS-5 were cloned and sequenced. Sequence analyses showed the nucleotides sequence of cloned genes had high homology to the sequences previously reported. The sequence alignment of 280 nucleotides between the cloned Ag I/II and the available sequence of the corresponding S. mutans GS-5 showed the perfect match. Comparing with the sequence of gtfD from S. mutans UA159, the corresponding nucleotide sequence of S. mutans GS-5 showed some mismatches and the mismatches introduced changes in four residues out of 105 amino acids, yielding four missense mutations.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

EXPANSIONS OF REAL NUMBERS IN NON-INTEGER BASES

  • Chunarom, Danita;Laohakosol, Vichian
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.861-877
    • /
    • 2010
  • The works of Erd$\ddot{o}$s et al. about expansions of 1 with respect to a non-integer base q, referred to as q-expansions, are investigated to determine how far they continue to hold when the number 1 is replaced by a positive number x. It is found that most results about q-expansions for real numbers greater than or equal to 1 are in somewhat opposite direction to those for real numbers less than or equal to 1. The situation when a real number has a unique q-expansion, and when it has exactly two q-expansions are studied. The smallest base number q yielding a unique q-expansion is determined and a particular sequence is shown, in certain sense, to be the smallest sequence whose corresponding base number q yields exactly two q-expansions.

Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences (이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

Transferability of Cupped Oyster EST (Expressed Sequence Tag)-Derived SNP (Single Nucleotide Polymorphism) Markers to Related Crassostrea and Ostrea Species

  • Kim, Woo-Jin;Jung, Hyungtaek;Shin, Eun-Ha;Baek, Ilseon
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.197-210
    • /
    • 2014
  • Single nucleotide polymorphisms (SNPs) are widely acknowledged as the marker of choice for many genetic and genomic applications because they show co-dominant inheritance, are highly abundant across genomes and are suitable for high-throughput genotyping. Here we evaluated the applicability of SNP markers developed from Crassostrea gigas and C. virginica expressed sequence tags (ESTs) in closely related Crassostrea and Ostrea species. A total of 213 putative interspecific level SNPs were identified from re-sequencing data in six amplicons, yielding on average of one interspecific level SNP per seven bp. High polymorphism levels were observed and the high success rate of transferability show that genic EST-derived SNP markers provide an efficient method for rapid marker development and SNP discovery in closely related oyster species. The six EST-SNP markers identified here will provide useful molecular tools for addressing questions in molecular ecology and evolution studies including for stock analysis (pedigree monitoring) in related oyster taxa.

Flexural Behavior of Reinforced Concrete Beams Strengthened with Grid-typs Carbon Fiber Plastics (탄소격자섬유로 보강한 철근 콘크리트보의 휨파괴 특성에 관한 연구)

  • 태기호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • Flexural fracture characteristics of newly-developed Grid-type carbon fiber plastics in the deteriorated reinforced concrete structures were investigated by the four-points fracture test to verify the strengthening effects in the beam specimens. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly the reasonable area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

  • PDF

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.