• Title/Summary/Keyword: yield monitoring

Search Result 266, Processing Time 0.024 seconds

Developmental Delay Effect of Harpacticoid Copepod, Tigriopus japonicus s.l. Exposure to 4-tert-octylphenol (4-tert -octylphenol에 노출된 저서성 요각류 Tigriopus japonicus s.l.의 발생지연 현상)

  • Bang, Hyun-Woo;Lee, Won-Choel;Kwak, Inn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • The ecotoxicological effects of 4-tert-octylphenol were observed on Harpacticoid copepoda Tigriopus japonicus s.l. gathered and cultured from tidal pool of Korean coast. There were no significant differences in survival rate (except 10 $\mu$g/L; 70.00%) and sex ratio (except 30 $\mu$g/L) on T. japonicus s.l. exposed to 4-tert-octylphenol. However, 4-tert-octylphenol induced developmental delay (copepodite emergence day and adult male mergence day) and retardation of first brooding day of adult female. Moreover the body size and biomass decreased at 4-tert-octylphenol exposure. As a result, detailed life-cycle research of T. japonicus s.l. may yield potential bioindicators for environmental monitoring and assessment.

Fault Detection with OES and Impedance at Capacitive Coupled Plasmas

  • Choe, Sang-Hyeok;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.499-499
    • /
    • 2012
  • This study was evaluated on etcher of capacitive coupled plasmas with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and C4F8 plasma with variable change such as pressure and addition of gas (Atmospheric Leak: N2 and O2), RF, pressure, that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by Vi probe was analyzed by statistical method to determine healthy of process. The main goal of this study is to understand unwanted tool performance to eventually improve productive capability. It is important for process engineers to actively adjust tool parameter before any serious problem occurs.

  • PDF

The Analysis of Common Metabolites of Organophosphorus Pesticides in Urine by Gas Chromatography/Mass Spectrometry

  • 박성수;표희수;이강진;박송자;박택규
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Most organophosphorus pesticides may be metabolized to yield some common phosphates in human or in animals, and these metabolites may be used as the exposure biomarkers to pesticides. In this study, we developed the extraction method of four phosphate metabolites from the spiked human urine in high recovery by the solid phase extraction with a reverse-phase cartridge (cyclohexyl silica) followed by the elution with methanol. The extracted urinary metabolites were derivatized with hexamethyldisilazane/trimethyl-chlorosilane/pyridine (2 : 1 : 10, v/v/v) and identified by gas chromatography/mass spectrometry. Calibration curve obtained from each metabolite standard using by GC/MS/SIM has shown good linearity and detection limits of metabolites were the range of 0.05-0.1 ㎍/㎖ in urine. Phenthoate, one of the organophosphorus pesticides, was orally administrated to rats. Four metabolites were detected in the rat urine. The results of this study may be applied to development of exposure biomarkers for monitoring of environmental pollutants.

Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea (국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가)

  • Kamruzzaman, Mohammad;Cho, Jaepil;Choi, Soon-Kun;Song, Jung-Hun;Song, Inhong;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for simulating water quality by considering paddy rice management practices. In this study, the performance of the APEX-Paddy model was evaluated using field data at Iksan experimental paddy sites in Korea. The discharge and pollutant load data during 2013 and 2014 were used to both manually and automatically calibrate the model. The APEX auto-calibration tool (APEX-CUTE 4.1) was used for model calibration and sensitivity analysis. Results indicate that APEX-Paddy reasonably performs in predicting runoff discharge rate and nitrogen yield. However, sediment and phosphorus yield is not correctly predicted due to the limitation of model schemes. With APEX-Paddy, the performance in reproducing the discharge and nitrogen yield is found to be a satisfactory level after manual calibration. The manually calibrated model performed better than the automatically calibrated model in nearly all comparisons. For runoff, manual calibration reduced PBIAS while R2 and NSE values of the automatically calibrated model were the same as the manual calibration. For T-N, NSE and PBIAS were reduced when using manual calibration, whereas R2 value was the same as manual calibration. The limitation of the APEX-Paddy model for predicting sediment, as well as the phosphorous yield, was discussed in this study.

Availability of Slurry Composting and Biofiltration for Cultivation of Cherry Tomato (방울 토마토 재배 시 퇴비단 여과 액비의 이용가능성)

  • Kim, Eun-Young;Park, Bong-Ju;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.385-391
    • /
    • 2013
  • In this study, the availability of slurry composting and biofiltration (SCB) solution as an alternative for synthetic nutrient solution was determined by monitoring the growth, fruit yield, and fruit quality of cherry tomato (Solanum lycopersicum L. 'Unicon'). Treatments for nutrient solution were consist of SCB 1/2N, 1N, 2N, and commercial nutrient solution 1N (CNS 1N) based on nitrogen concentration (218.32 $mg{\cdot}L^{-1}$) of cherry tomato nutrient solution (control 1N). All nutrient solution including SCB solution (440~520 mL per day) was supplied to rock wool medium using a timer. After 31 days of transplanting, fresh and dry weights of shoots, leaf area, plant height, stem diameter, SPAD value and number of node were measured. After measuring growth characteristics of tomato plants, total fruit yield, ratio of marketable fruit yield, fruit weight, total soluble solids content, total acidity, total phenolic concentration, and antioxidant capacity were determined once a week for 7 weeks. As a result, among the SCB treatments, SCB 1/2N was similar to control 1N and CNS 1N in terms of fresh and dry weights of shoots, leaf area, stem diameter, number of node, and SPAD value. Increased N concentration of SCB inhibited the growth of tomato plants. Total fruit yield of SCB 1/2N was 47% of that of control 1N which showed the best result. Percentage of marketable fruit yield in SCB 1/2N was about 58%. Soluble solids contents, total acidity, total phenolic concentration and antioxidant capacity was the highest in SCB 2N and the other treatments were not shown any difference. Blossom-end rot rarely occurred in control 1N and CNS 1N while SCB treatments without Ca induced the physiological disorder of 7~19%. In conclusion, SCB 1/2N was good for the vegetative growth of cherry tomato plants but reduced yield and quality of fruit compared with control 1N and CNS 1N. Thus, it is possible to apply SCB solution to grow cherry tomato plants hydroponically but in the consideration of fruits yield and quality additional supply of several minerals would be required.

Impact of Immediacy and Self-Monitoring on Positive Emotion and Sense of Community of User: Focusing on Social Interactive Video Platform (근접성과 자기 점검이 사용자의 긍정적 감정과 소속감에 미치는 영향: 소셜 인터랙티브 비디오 플랫폼을 중심으로)

  • Kim, Hyun Young;Kim, Bomyeong;Kim, Jinwook;Shin, Hyunsik;Kim, Jinwoo
    • Science of Emotion and Sensibility
    • /
    • v.19 no.2
    • /
    • pp.3-18
    • /
    • 2016
  • This research, through video-based communication in a social video platform environment, studied the influence of the relationship between a video-watching subject and other watchers to that of the user's positive emotion and sense of community. Based on prior psychological theories called Social Impact Theory and Self-Monitoring Theory, the research built an actual video-based social video platform environment in order to verify an alternative utilizing new means of interaction based on videos. The result shows that under video-watching settings, user feels greater positive emotion and sense of community when the screen shows other people's reaction live and when him or her self's face is shown together, compared to when they are not shown. Also, based on the ANOVA analysis, the percentage of increase in positive emotion was greater when the two conditions mentioned above were provided synchronously compared to when they were not. The result of the research is expected to yield insights about a new form of social video platform.

Spatiotemporal Monitoring of Soybean Growth and Water Status Using Drone-Based Shortwave Infrared (SWIR) Imagery (드론 기반 단파적외(SWIR) 영상을 활용한 콩의 생장과 수분 변화 모니터링)

  • Inji Lee;Heung-Min Kim;Youngmin Kim;Hoyong Ahn;Jae-Hyun Ryu;Hoejeong Jeong;Hyun-Dong Moon;Jaeil Cho;Seon-Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • Monitoring crop growth changes and water content is crucial in the agricultural sector. This study utilized drones equipped with Short Wavelength Infrared (SWIR) sensors, sensitive to moisture changes, to observe soybeans' growth and water content variations. We confirmed that as soybeans grow more vigorously, their water content increases and differences in irrigation levels lead to decreases in vegetation and moisture indices. This suggests that waterlogging slows down soybean growth and reduces water content, highlighting the importance of detailed monitoring of vegetation and moisture indices at different growth stages to enhance crop productivity and minimize damage from waterlogging. Such monitoring could also preemptively detect and prevent the adverse effects of moisture changes, such as droughts, on crop growth. By demonstrating the potential for early diagnosis of moisture stress using drone-based SWIR sensors, this research suggests improvements in the efficiency of large-scale crop management and increases in yield, contributing to agricultural production.

Monitoring for optimum antioxidant extraction condition of Gugija (Lycium chinensis Mill) extract (구기자 추출물의 최적 항산화 추출조건 모니터링)

  • Kim, Hak-Yoon;Lee, Gee-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.451-460
    • /
    • 2017
  • This study optimized the extraction of antioxidants from Gugija (Lycium chinensis Mill). To determine operational parameters, including ethanol concentration ($X_1$, 0~80%) and extraction time ($X_2$, 1~5 hr), response surface methodology was applied to monitor yield, anthocyanins, flavonoids and DPPH radical scavenging activity. Coefficients of determinations ($R^2$) of the models were range of 0.8645~0.9859 (p<0.01~0.1) in dependant parameters. Yield of Gugija extracts was maximized 23.12% in extraction conditions of 4.22 h at 8.25% ethanol. Anthocyanins was maximized 1.43 (OD in 530 nm) in extraction conditions of 3.06 h at 79.98% ethanol. Flavonoids was maximized $3,100{\mu}g/100g$ in extraction conditions of 3.37 h at 67.02% ethanol. DPPH radical scavenging activity was maximized 96.93% in extraction conditions of 1.67 h at 69.81% ethanol. Optimum extraction conditions (2.5 h extraction at 70% ethanol) were obtained by superimposing the contour maps with regard to anthocyanins, flavonoids and DPPH radical scavenging activity of Gugija. Maximum values of anthocyanins, flavonoids and DPPH radical scavenging activity in optimum extraction condition were 1.0080 (OD in 530 nm), $3,145{\mu}g/100g$, 96.96%, respectively. But values of anthocyanins, flavonoids and DPPH radical scavenging activity in water extraction condition (1 h at water) were 0.4652 (OD in 530 nm), $1,633{\mu}g/100g$, 86.98%, respectively.

Synthesis of Substrates for Gene Therapy Monitoring of HSV1-TK System (유전자 영상용 HSV1-TK 기질의 합성)

  • Choi, Tae-Hyun;Ahn, Soon-Hyuk;Choi, Chang-Woon;Lim, Sang-Moo;Awh, Ok-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.102-109
    • /
    • 2002
  • Purpose : In gene therapy, tumor cells expressing the herpes simplex virus thymidine kinase are sensitive to prodrugs. Potential prodrugs IVDU and IVFRU were synthesized and radiolabeled with radioiodine for noninvasive imaging of herpes simplex virus type 1 gene expression. Material and Methods : 5-(2-trimethysilyl) vinyl-2'-deoxyuridine and 5-(2-trimethylsilyl)vinyl-2'-fluoro-2'-deoxyuridine, precursors of 5-(2--iodo)viny l-2'-deoxy uridine(IVDU) and 5-(2-iodo)-2'-vinyl-2'-deoxy-2'-fluororibofuranosyl uracil(IVFRU), were synthesized from reaction of trans-1-trimethylsillyl-2-tri-n-butylstannylethylene with 5-iodo-2'-deoxyuridine and 5-iodo-2'-fluoro-2'-deoxyuridine, respectively, on the condition of Pd catalyst. These precursors were separated from reaction mixture by silica gel column chromatography method. Each precursor was radioiodinated with radioiodine by mixing with ICI oxidizing agent. These radioiodinated compounds were purified with HPLC. Radiohalogen exchange has been shown to be effective for the synthesis of products with lower specific activity. Similarly, carrier-added and high specific activity products have been isolated in respectable radiochemical yields using ICI method. Results : Synthetic yield of precursors, IVDU and IVFRU were 43% and 18%, respectively. Radiochemical purity of both compunds was over 98%. Conclusion : We synthesized precursors of IVDU and IVFRU for monitoring of HSV1-tk gene expression. Radiotracers were radioiodinated with high radiolabeling yield by ICI method.

Requirement Analysis of a System to Predict Crop Yield under Climate Change (기후변화에 따른 작물의 수량 예측을 위한 시스템 요구도 분석)

  • Kim, Junhwan;Lee, Chung Kuen;Kim, Hyunae;Lee, Byun Woo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures in response to climate change on a specific sector could cause undesirable impacts on other sectors inadvertently. An integrated system, which links individual models for components of agricultural ecosystems, would allow to take into account complex interactions existing in a given agricultural ecosystem under climate change and to derive proper adaptation measures in order to improve crop productivity. Most of models for agricultural ecosystems have been used in a separate sector, e.g., prediction of water resources or crop growth. Few of those models have been desiged to be connected to other models as a module of an integrated system. Threfore, it would be crucial to redesign and to refine individual models that have been used for simulation of individual sectors. To improve models for each sector in terms of accuracy and algorithm, it would also be needed to obtain crop growth data through construction of super-sites and satellite sites for long-term monitoring of agricultural ecosystems. It would be advantageous to design a model in a sector from abstraction and inheritance of a simple model, which would facilitate development of modules compatible to the integrated prediction system. Because agricultural production is influenced by social and economical sectors considerably, construction of an integreated system that simulates agricultural production as well as economical activities including trade and demand is merited for prediction of crop production under climate change.