DOI QR코드

DOI QR Code

Availability of Slurry Composting and Biofiltration for Cultivation of Cherry Tomato

방울 토마토 재배 시 퇴비단 여과 액비의 이용가능성

  • Kim, Eun-Young (Department of Horticultural Science, Chungbuk National University) ;
  • Park, Bong-Ju (Department of Horticultural Science, Chungbuk National University) ;
  • Oh, Myung-Min (Department of Horticultural Science, Chungbuk National University)
  • 김은영 (충북대학교 농업생명환경대학 원예과학과) ;
  • 박봉주 (충북대학교 농업생명환경대학 원예과학과) ;
  • 오명민 (충북대학교 농업생명환경대학 원예과학과)
  • Received : 2013.09.17
  • Accepted : 2013.11.05
  • Published : 2013.12.31

Abstract

In this study, the availability of slurry composting and biofiltration (SCB) solution as an alternative for synthetic nutrient solution was determined by monitoring the growth, fruit yield, and fruit quality of cherry tomato (Solanum lycopersicum L. 'Unicon'). Treatments for nutrient solution were consist of SCB 1/2N, 1N, 2N, and commercial nutrient solution 1N (CNS 1N) based on nitrogen concentration (218.32 $mg{\cdot}L^{-1}$) of cherry tomato nutrient solution (control 1N). All nutrient solution including SCB solution (440~520 mL per day) was supplied to rock wool medium using a timer. After 31 days of transplanting, fresh and dry weights of shoots, leaf area, plant height, stem diameter, SPAD value and number of node were measured. After measuring growth characteristics of tomato plants, total fruit yield, ratio of marketable fruit yield, fruit weight, total soluble solids content, total acidity, total phenolic concentration, and antioxidant capacity were determined once a week for 7 weeks. As a result, among the SCB treatments, SCB 1/2N was similar to control 1N and CNS 1N in terms of fresh and dry weights of shoots, leaf area, stem diameter, number of node, and SPAD value. Increased N concentration of SCB inhibited the growth of tomato plants. Total fruit yield of SCB 1/2N was 47% of that of control 1N which showed the best result. Percentage of marketable fruit yield in SCB 1/2N was about 58%. Soluble solids contents, total acidity, total phenolic concentration and antioxidant capacity was the highest in SCB 2N and the other treatments were not shown any difference. Blossom-end rot rarely occurred in control 1N and CNS 1N while SCB treatments without Ca induced the physiological disorder of 7~19%. In conclusion, SCB 1/2N was good for the vegetative growth of cherry tomato plants but reduced yield and quality of fruit compared with control 1N and CNS 1N. Thus, it is possible to apply SCB solution to grow cherry tomato plants hydroponically but in the consideration of fruits yield and quality additional supply of several minerals would be required.

본 실험은 SCB(slurry composting and biofiltration) 액비의 방울 토마토(Solanum lycopersicum L. 'Unicon') 수경재배 이용가능성을 알아보기 위해 실시 되었다. 배양액처리 대조구로는 방울 토마토 전용 배양액(Control 1N)을 사용하였고, 이 배양액의 질소량($218.32mg{\cdot}L^{-1}$)을 기준으로 시판양액 1N(CNS 1N), SCB 1/2N, SCB 1N, SCB 2N을 타이머 제어에 의해 하루에 440~520mL을 공급하였다. 31일 동안 재배한 후 지상부 생체중과 건물중, 엽면적, 초장, 줄기직경, SPAD값, 마디수를 조사하였으며, 그 후 주 1회 총 7번의 과실을 수확하여 총 생산량과 상품성 과실 비율, 과실중, 당도와 산도, 과실의 총 페놀 농도 및 항산화도, 배꼽썩음병 발생률을 조사하였다. 그 결과 SCB처리 중에는 SCB 1/2N은 지상부 생체중 건물중, 엽면적, 줄기직경, 마디수 및 SPAD값에서 Control 1N 및 CNS 1N과 유의적 차이를 보이지 않으면서 우수한 생육을 유도하였다. SCB는 질소 농도가 증가하면서 점차로 생육의 저해현상을 보였다. 과실의 총 생산량은 Control 1N에서 가장 높았으며, SCB 처리중 생장이 가장 좋았던 SCB 1/2N 처리구는 Control 1N 총 생산량의 47%를 기록하였다. 상품성 과실 비율도 SCB 1N과 SCB 1/2N 처리구는 약 57~58%로 낮게 나타났다. 당도와 산도, 총 페놀 농도와 항산화도에서는 SCB 2N에서 가장 높은 수치를 보였고, 나머지 처리구와 대조구에서는 유의적으로 차이를 보이지 않았다. 배꼽썩음병은 Control 1N, CNS 1N에서는 발생하지 않았지만, SCB 2N, 1N, 1/2N 처리구는 각각 약 7, 13, 19%의 발생률을 나타내었다. 결론적으로 SCB 1/2N 처리는 Control 1N와 CNS 1N과 비교해서 방울 토마토의 영양생장에는 양호한 결과를 보였지만, 과실의 수량과 품질을 유지하지는 못했다. 따라서 SCB 액비는 방울토마토 시설 수경 재배에서 배양액으로의 가능성은 확인하였지만, 과실의 생산량과 상품성을 고려한다면 개화기 및 과실 비대기에 추가적인 무기 양분의 공급이 필요할 것으로 판단되었다.

Keywords

References

  1. Ainswhorth, E.A. and K.M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2:875-877. https://doi.org/10.1038/nprot.2007.102
  2. Awika, J.M., L.W. Rooney, X.Wu, R.L. Prior, and L. Cisneros-Zevallos. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51:6657-6662. https://doi.org/10.1021/jf034790i
  3. Ben, G.O. and U. Kafkafi. 2002. Melon fruit quality as affected by timing, duration, and concentration of phosphate and nitrogen sources in recycled hydroponic system. 25:1563-1583.
  4. Cuartero, J. and F.M. Rafael. 1999. Tomato and salinity. Sci. Hort. 78:83-125.
  5. Dorais, M. 2007. Organic production of vegetable: state of the art and challenges. Can. J. Plant Sci. 87:1055-1066. https://doi.org/10.4141/CJPS07160
  6. Ehret, D.L., K. Usher, T. Helmer, G. Block, D. Steinke, B. Frey, T. Kuang, and M. Diarra. 2013. Tomato fruit antioxidants in relation to salinity and greenhouse climate. J. Agric. Food Chem. 61:1138-1145. https://doi.org/10.1021/jf304660d
  7. Gent, M.P.N. 2003. Solution electrical conductivity and ratio of nitrate to other nutrients affect accumulation of nitrate in hydroponic lettuce. HortScience 38:222-227.
  8. Gough, C. and G.E. Hobson. 1990. A comparison of the productivity, quality, shelf life characteristics and consumer reaction to the crop from cherry tomato plants grown at different levels of salinity. J. Hort. Sci. 65:431-439.
  9. Hao, X. and P. Papadopoulos. 2003. Effets of calcium and magnesium on growth, fruit yield and quality in a fall greenhouse tomato crop grown on rockwool. Can. J. Plant Sci. 83:903-912. https://doi.org/10.4141/P02-140
  10. Ho, L. and P. Adams. 1989. Effects of diurnal changes in the salinity of the nutrient solution on the accumulation of calcium by tomato fruit. Ann. Bot. 64:373-382.
  11. Jarecki, M.K., C. Chong, and R.P. Voropney. 2005. Evaluation of compost leachates for plant growth in hydroponic culture. J. Plant Nutr. 28:651-667. https://doi.org/10.1081/PLN-200052639
  12. Jeong, K.H., D.H. Lee, J.K. Kim, J.H. Kwak, and Y.H. Yoo. 2013. Is waste? Resources are? No. 95. RDA interobang, Suwon, Kyeonki-do, Korea. p. 16.
  13. Kabu, K.L. and E.W. Toop. 1970. Influence of potassium-magnesium antagonism on tomato plant growth. Can. J. Plant Sci. 50:711-715. https://doi.org/10.4141/cjps70-132
  14. Kang, B.K., H.H. Jung, and K.S. Kim. 2010. Effect of slurry composted and biofiltered solution as organic fertilizer on the growth of zysiagrass. Hort. Environ. Biotechnol. 51:507-512.
  15. Kwon, Y.H., U. Lee, S.I. Hwang, and E.S. Baik. 2009. The characteristics of growth and fruiting in chestnut trees by SCB (slurry composting and biofilteration) liquid fertilizer. J. Kor. For. Soc. 98:676-680 (in Korean).
  16. Lee, J.T., I.J. Ha, H.D. Kim, J.S. Moon, W.I. Kim, and W.D. Song. 2006. Effect of liquid pig manure on growth, nutrient uptake of onion and chemical properties in soil. Kor. J. Hort. Sci. Technol. 24:148-156 (in Korean).
  17. Lee, C.H., K.Y. Shin, J.T. Lee, and G.J. Lee. 2003. Determination of nitrogen application level for Chinese cabbage with application of poultry manure compost in highland. Korean J. Soil Sci. Fert. 336:280-289 (in Korean).
  18. Lee, S.B., K.M. Cho, C.H. Yang, Y.J. Oh, T.I. Park, and K.J. Kim. 2011. Effects of split application of SCB liquid fertilizer on rice yield and soil chemical property in Honam plain field. Kor. J. Crop Sci. 56:140-145 (in Korean). https://doi.org/10.7740/kjcs.2011.56.2.140
  19. Lim, T.J., S.D. Hong, S.B. Kang, and J.M. Park. 2009. Evaluation of the preplant optimum application rates of pig slurry composition biofiltration for Chinese cabbage. Kor. J. Hort. Sci. Technol. 27:572-577 (in Korean).
  20. Lim, T.J., S.D. Hong, S.H. Kim, and J.M. Park. 2008. Evaluation of yield and quality from red pepper for application rates of pig slurry composting biofiltration. Kor. J. Envrion. Agri. 27:171-177 (in Korean). https://doi.org/10.5338/KJEA.2008.27.2.171
  21. Miller, N.J. and C.A. Rice-Evans. 1996. Spectrophotometric determination of antioxidant activity. Redox Rpt. 2:161-171.
  22. Mizrahi, Y. 1982. Effects of salinity on tomato fruit ripening. Plant Physiol. 69:966-970. https://doi.org/10.1104/pp.69.4.966
  23. Mizrahi, Y., E. Taleisnik, V. Kagan-Zur, Y. Zohar, R. Offenbach, E. Matan, and R. Golan. 1998. A saline irrigation regime for improving tomato fruit quality without reducing yield. J. Amer. Soc. Hort. Sci. 133:202-205.
  24. National Academy of Agricultural Science (NAAS). 2009. Method of soil analysis, National Academy of Agricultural Science. RDA, Suwon, Korea.
  25. Navarro, J.M., C. Garrido, V. Martinez, and M. Carvajal. 2003. Water relations and xylem transport of nutrient in pepper plants grown under two different salts stress regimes. Plant Growth Regulat. 41:237-245. https://doi.org/10.1023/B:GROW.0000007515.72795.c5
  26. Oh, S.I. 2012. Chracterstics and reduction of berry cracking in 'Heukgoosul' and 'Tamnara' grapes (Vitis labruscana B.). PhD. Diss., Univ. of Chungbuk, Cheongju, Korea.
  27. Rhee, H.C., M.W. Cho, S.Y. Lee, G.L. Choi, and J.H. Lee. 2007. Effect of salt concentration in soil on the growth, yield, photosynthetic rate, and mineral uptake of tomato in protected cultivation. J. Bio-Environ. Control 16:328-332 (in Korean).
  28. Rubio, J.S., F. Garcia-Sanchez, F. Rubio, and V. Martinez. 2009. Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by $K^+$ and $Ca^{2+}$ fertilization. Sci. Hort. 119:79-87. https://doi.org/10.1016/j.scienta.2008.07.009
  29. Rural Development Adminstration (RDA). 2001. Toamto culture (Standard textbook for farming-106). RDA press, Suwon.
  30. Saure, M.C. 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.) - a calcicum- or a stress-related disorder? Sci. Hort. 90:248-253.
  31. Seo, Y.H., M.S. Ahn, A.S. Kang, and Y.S. Jung. 2011. Influence of continuous application of low-concentration swine slurry on soil properties and yield of tomato and cucumber in a green house. Kor. J. Soil Fert. 44:773-778 (in Korean). https://doi.org/10.7745/KJSSF.2011.44.5.773
  32. Son, K.H., J.H. Park, D.I. Kim, and M.M. Oh. 2012. Leaf shape index, growth, and phytochemicals in tow leaf lettuce cultivars grown under monochromatic light-emitting diodes. Kor. J. Hort. Sci. Technol. 30:664-672.
  33. Taiz, L. and E. Zeiger. 2006. Plant physiology: Stress physiology. 4th ed. Life Science, Sunderland, M.A.
  34. van Iersel, M. 1999. Fertilizer concentration affects growth and nutrient composition of subirrigated pansies. Hort-Science 34:660-663.
  35. Wu, M. and C. Kubota. 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hort. 116:122-129. https://doi.org/10.1016/j.scienta.2007.11.014
  36. Zhang, J. and W.J. Davies. 1991. Antitranspirant activity in xylem sap of maize plants. J. Exp. Bot. 42:317-321. https://doi.org/10.1093/jxb/42.3.317