• Title/Summary/Keyword: yield behavior

Search Result 1,187, Processing Time 0.031 seconds

On the effect of GFRP fibers on retrofitting steel shear walls with low yield stress

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1453-1461
    • /
    • 2015
  • In this article the non-linear behavior of the shear wall with low yield stress retrofitted with Glass Fiber Reinforced Polymer (GFRP) is investigated under pushover loading. The models used in this study are in ${\frac{1}{2}}$ scale of one story frame and simple steel plates with low yield stress filled the frame span. The models used were simulated and analyzed using finite elements method based on experimental data. After verification of the experimental model, various parameters of the model including the number of GFRP layers, fibers positioning in one or two sides of the wall, GFRP angles in respect to the wall and thickness of the steel plate were studied. The results have shown that adding the GFRP layers, the ultimate shear capacity is increased and the amount of energy absorbed is decreased. Besides, the results showed that using these fibers in low-thickness plates is effective and if the positioning angle of the fibers on the wall is diagonal, its behavior will improve.

Flow Behavior of Sweet Potato Starch in Mixed Sugar Systems

  • Cho, Sun-A;Kim, Bae-Young;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.249-252
    • /
    • 2008
  • Flow behaviors of sweet potato starch (SPS) pastes (5% w/w) were studied in the presence of various sugars (xylose, glucose, fructose and sucrose) and sugar alcohols (xylitol and sorbitol). The flow properties of SPS-sugar mixtures were determined from the rheological parameters of power law model. The vane method was also employed for determining yield stresses of SPS-sugar mixtures directly under a controlled low shear rate. At $25^{\circ}C$ all the samples showed shear-thinning behaviors ($n=0.35{\sim}0.44$) with yield stress. The consistency index (K) values of SPS-sugar mixtures increased in the following order: sorbitol> xylitol> control (no sugar)> sucrose> fructose> glucose> xylose, showing that the addition of sugar alcohols enhanced the K values. The yield stress values were reduced in the presence of ugars and sugar alcohols and they also increased with an increase in swelling power of starch granules in the SPS-sugar mixture systems.

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(II): Focused on the Tensile Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(II): 인장부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.47-53
    • /
    • 2022
  • As the limit state design method is applied as a method of designing concrete structures, the ultimate state is considered in the analysis or design. In fact, when the reinforced concrete member bears tensile force, the force is transmitted from the rebar to the concrete, and the structure bears the tensile force to the ultimate state even after yield. Therefore, the accurate evaluation of behavior after yield, it is necessary to study the tension stiffening effect after yield of the flexural member. In this study, a 4-point bending test was conducted on the RC simple beam having a rectangular cross section of the double reinforcement, and the behavior of the member was analyzed in detail using the image analysis method. Using the analysis results, the estimation formula for the tension stiffening effect after yield was proposed, and the applicability of this was verified through the experimental results of existing study. The difference between the ultimate strain and the yield strain representing the ductile behavior of the member is similar to the experimental results. The prediction of the proposed formula is relatively accurate.

A Constitutive Law for Porous Solids with Pressure-Sensitive Matrices and a Void Nucleation Model (평균수직응력에 민감한 모재를 가진 기공체의 구성식과 기공생성모델)

  • Jeong, Hyeon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.472-480
    • /
    • 2000
  • A macroscopic yield criterion for porous solids with pressure-sensitive matrices modeled by Coulomb's yield criterion was obtained by generalizing Gurson's yield criterion with consideration of the hydrostatic yield stresses for a spherical thick-walled shell and by fitting the finite element results of a voided cube. The macroscopic yield criterion is valid for negative mean normal stresses as well as for positive mean normal stresses. From the yield criterion, a plastic potential function for the porous solids was derived either for plastic normality flow or for plastic non-normality flow of pressure- sensitive matrices. In addition, the elastic relation, an evolution equation of the plastic flow stress of the matrices and an evolution equation of the void volume fraction were presented to complete a set of constitutive relations. The set of constitutive relations was implemented into a finite element code ABAQUS to analyze the material behavior of rubber-toughened epoxies. The cavitation and the deformation behavior were analyzed around a crack tip under three-point bending and around notch tips under four-point bending. In the numerical analyses, the cavitation of rubber particles was considered via a stress-controlled nucleation model. The numerical results indicate that a reasonable cavitation zone can be obtained with void nucleation controlled by the macroscopic mean normal stress, and a plastic zone is smaller around a notch tip under compression than under tension. These numerical results agree well with corresponding experimental results on the cavitation and plastic zones.

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition (평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6391-6396
    • /
    • 2015
  • In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

An investigation of seismic parameters of low yield strength steel plate shear walls

  • Soltani, Negin;Abedi, Karim;Poursha, Mehdi;Golabi, Hassan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Steel plate shear walls (SPSWs) are effective lateral systems which have high initial stiffness, appropriate ductility and energy dissipation capability. Recently, steel plate shear walls with low yield point strength (LYP), were introduced and they attracted the attention of designers. Structures with this new system, besides using less steel, are more stable. In the present study, the effects of plates with low yield strength on the seismic design parameters of steel frames with steel plate shear walls are investigated. For this purpose, a variety of this kind of structures with different heights including the 2, 5, 10, 14 and 18-story buildings are designed based on the AISC seismic provisions. The structures are modeled using ANSYS finite element software and subjected to monotonic lateral loading. Parameters such as ductility (${\mu}$), ductility reduction ($R_{\mu}$), over-strength (${\Omega}_0$), displacement amplification ($C_d$) and behavior factor (R) of these structures are evaluated by carrying out the pushover analysis. Analysis results indicate that the ductility, over-strength and behavior factors decrease by increasing the number of stories. Also, the displacement amplification factor decreases by increasing the number of stories. Finally, the results were compared with the suggestions provided in the AISC code for steel plate shear walls. The results indicate that the values for over-strength, behavior and displacement amplification factors of LYP steel plate shear wall systems, are larger than those proposed by the AISC code for typical steel plate shear wall systems.

Graft Copolymerization of MMN4-Vinylpyridine onto Cotton Fiber (면섬유(綿纖維)에의 MMA/4-Vinylpyridine의 공(共)그라프트 중합(重合))

  • Bae, Hyun-Sook;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.347-358
    • /
    • 1993
  • Graft copolymerization of MMN4-VP onto cotton fiber using Ce(IV) salt as an initiator and triton X-100 as an emulsifier was performed under various polymerization conditions. In cograft polymerization, the polymeization behavior according to variation of 4-VP feed composition and the characteristics of MMA/4-VP graft polymer such as affinity for acid dye owing to cationization of cotton, antibacterial activity and thermal behavior were investigated. The results of this study were as follows : 1. While in copolymerization of MMA and 4-VP, 4-VP content in copolymer was more than that of monomer feed composition. 2. Increasing 4-VP content, graft yield was decreased, but graft efficiency was increased. In case of MMA/4-VP graft polymerization, the highest graft yield was obtained at higher CAN concentration than in MMA graft polymerization, the reason is that the behavior of 4-VP was disturbed by Ce(IV) sail 3. Elevation of temperature resulted in increase of graft yield and the apparent activation energy of MMA/4-VP graft polymerization was higher than that of MMA graft polymerization. 4. MMA/4-VP grafted cotton fiber showed affinity for acid dye, antibacterial activity and higher moisture regain than MMA grafted cotton fiber. MMA/4-VP grafted cotton fabric showed improvement of wrinkle recovery up to 40~50% graft yield and decreased thereafter. MMA/4-VP and MMA grafted cotton fabric did not showed significant difference in wrinkle recovery and stiffness.

  • PDF

Yield and Compression Behavior of Semi-Solid Material by Upper Bound Method (상계법에 의한 반융용 재료의 항복과 압축거동)

  • 최재찬;박형진;박준홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.195-198
    • /
    • 1995
  • In Semi-Solid Forging, it is necessary to control the forming variables accurately in order to make near-net-shape products. Generally, the defects of products may occur due to liquid segregation which can be caused by the degree of deformation and condition of friction in Semi-Solid Forging, where the segregation is to be predicted by flow analysis. This paper presents the feasibility of theoretical analysis model using the new yield function which is proposed by Doraivelu et al. to the flow analysis of the semi-solid dendritic Sn-15%Pb alloys instead of adopting the yield criterion of Shima & Oyane which is used by Charreyron and usefulness of the adopted yield function. The distribution of the liquid fraction at various strains in radial direction and the influence of friction are estimated by Upper Bound Method.

  • PDF

Yield and Compression Behavior of Semi-Solid Materials by Upper-Bound Method (상계법에 의한 반용융 재료의 항복과 압축거동)

  • 최재찬;박형진;박준홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.139-144
    • /
    • 1998
  • In Semi-Solid Forging, it is necessary to control the forming variables accurately in order to make near-net-shape products. Generally, the defects of products may occur due to liquid segregation which can be caused by the degree of deformation and strain rate, and condition of friction in Semi-Solid Forging, where the segregation is to be predicted by flow analysis. This paper presents the feasibility of theoretical analysis model using the new yield function for compressible P/M materials which is proposed by Doraivelu et at. to the flow analysis of the semi-solid dendritic Sn-15%Pb alloys instead of adopting the yield criterion of Shima and Oyane which is used by Charreyron and Flemings. The simple compression process is taken into consideration as the model to confirm the usefulness of the adopted yield function. The distribution of the liquid fraction at various strains and strain rates in radial direction, and the influence of friction are estimated by upper-bound method.

  • PDF