• Title/Summary/Keyword: yellow mosaic

Search Result 162, Processing Time 0.023 seconds

Standardization of a Graft Inoculation Method for the Screening of Mungbean Germplasm against Mungbean yellow mosaic virus (MYMV)

  • Akhtar, Khalid Pervaiz;Ahsanul Haq, M.
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.257-259
    • /
    • 2003
  • This report described a simple, inexpensive, faster, and effective graft inoculation method for the artificial transmission of Mungbean yellow mosaic virus (MYMV). Success of grafting and disease transmission was 100% in this method. Screening of mungbean germplasm using this method will prevent the chance of escape infection, probably as a consequence of non-preference mechanism and loss of vector infectivity. The grafting method described here is applicable to both screenhouse and field trials.

Natural Hosts and Disease Cycle of Soybean yellow mottle mosaic virus (Soybean yellow mottle mosaic virus의 자연기주와 병환)

  • Lee, Su-Heon;Kim, Chang-Suk
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.281-287
    • /
    • 2013
  • In surveys of weed occurrence undertaken from 2006 to 2007, near to the Daegu experimental fields of the National Institute of Crop Science, plants belonging to 31 families, 74 genera and 96 species were found. For the investigation of the natural or alternative hosts of Soybean yellow mottle mosaic virus (SYMMV), 495 plant samples belonging to 26 families 84 species were subjected to RT-PCR. SYMMV was detected only from legume plants such as Glycine soja, Vigna angularis var. nipponensis, Trifolium repens, and Lespedeza cuneata. Among legume plants tested, more than a third of G. soja (wild soybean) contained SYMMV, indicating that the wild soybean played an important role as a reservoir of SYMMV. Wild soybeans may be infected with SYMMV as early as mid-July. Considering the results of early infection and the high infection rate of seed and seed transmission of SYMMV in G. soja, wild soybeans may have played an important role in the completion of disease cycle of the virus.

Bean Yellow Mosaic Virus and Cucumber Mosaic Virus Causing Mosaic Disease on Gladiolus in Korea (그라디오러스에 발생하는 BYMV와 CMV에 관한 연구)

  • Lee S.H.;Kim J.S.;Choi Y.M.
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.198-202
    • /
    • 1983
  • A mosaic disease of gladiolus has been commonly observed with an infection rate of $43.3\%$ in the field. Bean Yellow Mosaic Virus(BYMV) produced veinal spreading lesions on Cheonopodium amaranticolor, veinal necrosis and severe leaf distortion on Phaseolus vulgaris 'Scotia' and mosaic on Vi cia faba. Cucumber Mosaic Virus(CMV) produced local lesions on C. amaranticolor, mosaic symptoms on Nicotiana glutinosa and Cucumis sativus. BYMV and CMV were transmitted by the green peach aphid. Purified BYMV and CMV had a typical maximum absorption at 260nm. In agar gel diffusion test, BYMV and CMV gave positive reaction with their homologous antiserum. The size of BYMV was 750nm in length, and CMV was 30nm in diameter.

  • PDF

Field Evaluation of Mungbean Recombinant Inbred Lines against Mungbean Yellow Mosaic Disease Using New Disease Scale in Thailand

  • Akhtar, Khalid P.;Kitsanachandee, R.;Srinives, P.;Abbas, G.;Asghar, M.J.;Shah, T.M.;Atta, B.M.;Chatchawankanphanich, O.;Sarwar, G.;Ahmad, M.;Sarwar, N.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.422-428
    • /
    • 2009
  • Studies were conducted to identify the sources of resistance in mungbean recombinant inbred lines (RILs) in Thailand against mungbean yellow mosaic disease (MYMD). 146 mungbean RILs in $F_8$ series were evaluated in a field including resistant parent NM-10-12-1 and susceptible parent KPS 2 during summer 2008 under high inoculum pressure. The RILs were subsequently scored for disease symptom severity ratings (DSSR) using a new scale. Observations regarding DSSR and % disease index (%DI) showed that the tested RILs responded differently to the disease. A large number of RILs (132) were found highly susceptible, 12 were susceptible, 3 were tolerant and one was resistant. Overall screening results showed that three RILs, viz. line no. 30, 100 and 101 had minimum DSSR and % disease index thus they are good source of resistance to MYMD in spite of high disease pressure and can therefore be used directly as varieties to manage the disease in Thailand.

Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV) Infection of Chinese Cabbage Plants Using Raman Spectroscopy

  • Kim, Saetbyeol;Lee, Sanguk;Chi, Hee-Youn;Kim, Mi-Kyeong;Kim, Jeong-Soo;Lee, Su-Heon;Chung, Hoeil
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.105-109
    • /
    • 2013
  • Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS) was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV) infected Chinese cabbage leaves were collected by mixing with gold (Au) nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.

Incidence of Watermelon Mosaic Virus in Cucurbits (박과 작물에 발생하는 Watermelon Mosaic Virus에 관한 연구)

  • Lee Soon Hyung;Lee Key Woon
    • Korean journal of applied entomology
    • /
    • v.20 no.4 s.49
    • /
    • pp.191-195
    • /
    • 1981
  • Cucurbits including pumpkin (Cucurbita pepo), gourd (Lagenariaa siceraria), cucumber (Cucumis sativus), melon(Cucumis melo) and watermelon(Cucurbita anguria) were diseased with mosaic symptoms. The causal virus was identified as watermelon mosaic virus(WMV). The WMV was transmitted by Myzus persicae Sulzer, and no seed borne virus was found. The virus caused large local lesions on the inoculated leaves of the Chenopodium amaranticolor and mosaic symptom on the upper leaves of Cucumis melo, Cucumis sativus, Lagenaria siceraria, Cucurbita anguria and Cucurbita pepo. There were no symptoms on the inoculated leaves of the Nicotiana tabacum var. Bright yellow, Nicotiana glutinosa, Vigna unguiculata. Petunia hybrida and Datura stramonium. Thermal inactivation point was $55\~65^{\circ}C$, dilution end point was $10^{-4}\;10^{-5}$ and longevity in vitro of the virus was $7\~8$ days. The virus showed positive reaction against watermelon mosaic virus antiserum in microprecipitin tests. The virus particles were flexuous rods in size of 750 nm.

  • PDF

Use of Serological-Based Assay for the Detection of Pepper yellow leaf curl Indonesia virus

  • Hidayat, Sri Hendrastuti;Haryadi, Dedek;Nurhayati, Endang
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.328-332
    • /
    • 2009
  • Diseases caused by Pepper yellow leaf curl virus infection is considered to be emerging plant diseases in Indonesia in the last five years. One key factor for disease management is the availability of accurate detection of the virus in plants. Polyclonal antibody for Pepper yellow leaf curl Indonesia virus-Bogor (PYLCIV-Bgr) was produced for detection of the virus using I-ELISA and DIBA methods. The antibody was able to detect PYLCIV-Bgr from infected plants up to dilution 1/16,384 and cross reaction was not observed with Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV), and Chilli veinal mottle virus (ChiVMV). Positive reaction was readily detected in membrane containing Begomovirus samples from Yogyakarta (Kaliurang and Kulonprogo) and West Java (Bogor and Segunung). Infection of PYLCIV-Bgr in chillipepper, tomato, and Ageratum conyzoides was also confirmed using polyclonal antibody for PYLCIV-Bgr in DIBA. Polyclonal antibody for PYLCIV-Bgr is suggested to be included in disease management approach due to its good detection level.

Coat Protein Gene-Mediated Resistance to Barely Yellow Mosaic Virus-HN and Barely Mild Mosaic Virus-Kor in Transgenic Barely

  • Lee, Kui-Jae;Kim, Hyung-Moo;Park, Min-Kyung;Lee, Wang-Hyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.75.1-75
    • /
    • 2003
  • Barely yellow mosaic(BaYMV) and barely mild mosaic (BaMMV) bymoviruses are both transmitted by the soil-inhabiting fungus Polymyxa gramnis, and are responsible for economic losses in barley crops in Asia and Europe. Because chemical control of the vector is ineffective, the losses can only be prevented by growing resistant barley cultivars. The objective of this study is to produce resistant barley plants by transformation with viral coat protein(cp) genes. Resistance tests of T1 plants transformed with the BaYMV CP gene showed that at least four independent lines had clear resistance to BaYMV but two other lines were highly susceptible with severe symptoms. The CP gene was detected in all resistant T1 plants by genomic PCR. Most of T2 progenies derived from the resistant T1 lines also showed resistance. In contrast, only one out of 21 independent T2 lines transformed with the BAMMV CP gene tested showed clear resistance to BaMMV, and others were very susceptible. Further analyses of resistance and CP gene expression are in progress.

  • PDF

Sequence Analysis of the Coat Protein Gene of a Korean Isolate of Iris Severe Mosaic Potyvirus from Iris Plant

  • Park, Won-Mok;Lee, Sang-Seon;Park, Sun-Hee;Ju;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • The coat protein gene of iris severe mosaic potyvirus, which was isolated in Korea, ISMV-K, from iris plant was cloned and its nucleotide sequence was determined. The coat protein of the virus contained 252 amino acid residues, including five potential N-glyxosylation site motifs. The coat protein of ISMV-K has 99.1% and 98.4% sequence identities with those of the Netherlands isolate of ISMV (ISMV-Ne) form crocus for the nucleotide and amino acids, respectively. The coat protein of ISMV-K has 50.4% to 60.3% nucleotide sequence identities and 47.3% to 55.7% amino acid identities with those of other 21 potyviruses, indicating ISMV to be a distinct species of the genus. The coat protein of ISMV-K was closely related with bean yellow mosaic virus and clover yellow vein virus in the phylogenetic tree analysis among the potyviruses analyzed. ISMV was easily and reliably detected from virus-infected iris leaves by RT-PCR with a set of the virus-specific primers.

  • PDF