• Title/Summary/Keyword: yellow emission

Search Result 164, Processing Time 0.03 seconds

Low-Molecular-Weight White Organic-Light-Emitting-Devices using Direct Color Mixing Method

  • Lee, Sung-Soo;Song, Tae-Joon;Ko, Myung-Soo;Cho, Sung-Min
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.6-12
    • /
    • 2002
  • In order to achieve white emission from organic light emitting devices (OLEDs), five distinct structures were fabricated and tested. The white emission was obtained using two different color-emitting materials (yellow from rubrene-doped $Alq_3$ and blue from DPVBi) with or without a carrier-blocking layer. For enhancing the red emission, two types of devices with three-color emitting materials were fabricated. The white emission, close to the CIE coordinate of (0.3,0.3), was achieved by using two blocking layers as well that as without a blocking layer. This paper covers the subject of controlling the location of exciton recombination zone. It has been found that there is a trade-off in that the devices with three color emitting layers do not show as much luminescence efficiency compared to those with two color emitting layers, but rather, show distinct red emission in the resultant emission spectra. The highest power efficiency was measured to be 1.15lm/W at 2,000 $cd/m^2$ for a structure with two color-emitting layers.

Enhancement of Burner Performance of Household Gas Fired Absorption Chiller/Heaters (가정용 가스 냉난방기용 연소기의 성능개선 연구)

  • Yoon, Young-Seok;You, Hyun-Seok;Kim, Tae-Han;Lee, Joong-Seong;Han, Jeong-Ok
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.111-115
    • /
    • 1999
  • In order to enhance the burner performance of household gas fired absorption chiller/heaters, the operating condition(excess air $\approx$ 10%) of the burner currently being used was required to be optimized. In this regard, we examined where the $CO_{\min}$. emission limit was located between blow off and yellow tip limit and how much amount of excess air was exhausted by means of observing blow off and yellow tip limit. It was found that the $CO_{\min}$ limit(excess air ${\approx}$ 4%) was determined near the yellow tip limit. The effect of exhaust pressure on the $CO_{\min}$. limit was that, if exhaust pressure was higher than that in steady condition, higher air blower fan rpm is demanded to maintain the $CO_{\min}$ limit. Therefore, it was necessary to optimize the operating condition of burner in terms of a thermal efficiency and safety.

  • PDF

Synthesis and Characterization Of Green- and Yellow-Emitting Zinc Silicate Thin Films Doped with Manganese

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.546-546
    • /
    • 2013
  • Zinc silicate ($Zn_2SiO_4$) has been identified as a suitable host material for a wide variety of luminescent activators, such as transition metal and rare earth elements. In particular, manganese-activated $Zn_2SiO_4$ exhibits highly efficient photoluminescenceand cathodoluminescence, which allows this material to be used in fluorescent lamps and display applications. In this study, we investigated the green and yellow luminescence from Mn-doped $Zn_2SiO_4$ thin films that were synthesized using radio frequency magnetron sputtering followed by annealing at $600{\sim}1,200^{\circ}C$ The refractive index of the $Zn_2SiO_4$: Mn films showed normal dispersion behavior. It was found that the $Zn_2SiO_4$: Mn films annealed at $800^{\circ}C$ ossessed a mixture of alpha and beta phases. The obtained photoluminescence spectrum consisted of two emission bands centered at 525 nm in the green range and 574 nm in the yellow range. The green luminescence originates from the divalent Mn ions in alpha phase of $Zn_2SiO_4$, while the yellow luminescence comes from the divalent Mn ions in beta phase. The films annealed at and above $900^{\circ}C$ xhibited only the alpha phase. The broad PL excitation band was observed ranging from 220 to 300 nm with a maximum at around 243 nm.

  • PDF

The Electroluminescence Display using Electron Beam evaporation (E-Beam 증착기를 이용한 전계발광 표시장치)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1051-1055
    • /
    • 2008
  • If ZnS receive electric energy, it can generate light. Thin film ELD has merits of excellent sight effect, solid state and easy fabrication but has problems of low emission density, high power loss and high operating voltage. Thin film deposited by electron beam evaporator has good uniformity of 6%. We fabricate excellent thin film ELD for solution of this problems. The thin film ELD made in this study has brightness of 650fL at yellow light and 350fL at green light.

Combustion characteristics of coaxial diffusion flame with high preheated and swirled air (고온 공기와 선회수에 의한 동축 분류 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.112-117
    • /
    • 2001
  • An experiment using high preheated and swirled air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. $N_2$ gas was used for diluent and propane was utilized for fuel. Combustion using high preheated air has two remarkable characteristics ; (1) low NOx emission with increasing dilution level, (2) high thermal efficiency in the furnace. Also, swirled air can mix fuel and oxidizer well in condition of diffusion flme and maintain the stable combustion. The color of flame changes from yellow to blue green according to increasing the dilution level of mixture gas. NO emission decreased with increasing dilution level and the swirl number.

  • PDF

Gallium nitride nanoparticle synthesis using nonthermal plasma with gallium vapor

  • You, K.H.;Kim, J.H.;You, S.J.;Lee, H.C.;Ruh, H.;Seong, D.J.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1553-1557
    • /
    • 2018
  • Gallium nitride (GaN) nanoparticles are synthesized by the gallium particle trapping effect in a $N_2$ nonthermal plasma with metallic Ga vapor. A proposed method has an advantage of synthesized GaN nanoparticle purity because the gallium vapor from the inductively heated tungsten boat does not contain any impurity source. The synthesized particle size can be controlled by the amount of Ga vapor, which is adjusted using the plasma emission ratio of nitrogen to gallium, owing to the particle trapping effect. The synthesized nanoparticles are investigated by electron microscopy studies. High-resolution transmission electron microscopy (HRTEM) studies confirm that the synthesized GaN nanoparticles (10-40 nm) crystallize in a single-phase wurtzite structure. Room-temperature photoluminescence (PL) measurements indicate the band-edge emission of GaN at around 378 nm without yellow emission, which implies that the synthesized GaN nanoparticles have high crystallinity.

Afterglow Effect from Adding BaF2 to Oxyfluoride Glass Ceramic Containing Eu2+-doped Nepheline

  • Lee, Hansol;Chung, Woon Jin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.413-419
    • /
    • 2022
  • An oxyfluoride glass ceramic containing Eu2+-doped nepheline and LaF3 crystals was modified, with BaF2 replacing LaF3 up to 20 mole percent, and its luminescence change was monitored. With increasing BaF2 content, the greenish yellow emission centered at 540 nm under 400-nm excitation decreased, and a new afterglow emission from the modified ceramic was observed after removal of the excitation light source. X-ray diffraction (XRD) and transmission electron microscopy with energy dispersive spectroscopy (TEM-EDS) were used to investigate the changes in the crystalline phases within the glass matrix. Time dependent emission intensity was monitored to observe the afterglow, and the possible mechanism for the afterglow due to BaF2 addition was considered.

Synthesis and Emission Properties of Dy3+-doped BaMoO4 Phosphors (Dy3+ 이온이 도핑된 BaMoO4 형광체의 합성과 발광 특성)

  • Cho, Shinho
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • $Dy^{3+}$-doped $BaMoO_4$ phosphor powders were synthesized by using the solid-state reaction method and their crystalline structure, morphology and size of particles, excitation and emission properties were investigated. The structure of all the phosphor powders, irrespective of the mol ratio of $Dy^{3+}$ ions, was found to be the tetragonal system with the main diffraction peak at (112) plane. The grain particles agglomerate together to form larger clusters with increasing the mol ratio of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 293 nm and weak multiline peaked in the range of 230~320 nm, which were due to the transitions of $Dy^{3+}$ ions. The emission of the phosphors peaking at 666 and 754 nm, originating from the transitions of $^4F_{9/2}{\rightarrow}^6H_{11/2}$ and $^4F_{9/2}{\rightarrow}^6H_{9/2}$ of $Dy^{3+}$ ions, was rather weak, while the intensity of blue and yellow emission peaking at 486 nm and 577 nm due to the transitions of $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ of $Dy^{3+}$ ions was significantly stronger. The experimental results suggest that the white-light emission can be realized by controlling the yellow-to-blue intensity ratio of $Dy^{3+}$ emission.

Luminescence properties of a new $Tb^{3+}$ ion activated long persistent phosphor (새로운 $Tb^{3+}$ 이온 활성 축광성 형광체의 발광 특성)

  • Park, Byeong-Seok;Choi, Jong-Geon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.130-134
    • /
    • 2009
  • A new long persistent phosphors of $CaZrO_3$ was synthesized at high temperature with weak reduction atmosphere by a traditional solid state reaction method. Photoluminescence spectra analysis showed that the $CaZrO_3$ doped with $Tb^{3+}$ emitted green-yellow emission caused by the energy level transition from the $^5D_3$ and $^5D_4$ to $^7F_1{\sim}^7F_6$. The main emission spectra of 542 nm peak by the $^5D_4{\rightarrow}^7F_5$ transition was revealed through synthesizing at high temperature in $N_2$ gas atmosphere. The afterglow emission spectra of $CaZrO_3:Tb^{3+}$ long persistent phosphores arise at 546 nm peak of narrow range. After the 254 nm ultraviolet light excitation source was switched off, the green-yellow long persistent phosphor can be observed which could last for 8 h in the limit of light perception of dark-adapted human eyes ($0.32\;mcd/m^2$).

The Effect of Dust Emissions on PM10 Concentration in East Asia (황사 배출량이 동아시아 지역 PM10 농도에 미치는 영향)

  • Choi, Dae-Ryun;Koo, Youn-Seo;Jo, Jin-Sik;Jang, Young-Kee;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • The anthropogenic aerosols originated from the pollutant emissions in the eastern part of China and dust emitted in northwestern China in Yellow sand regions are subsequently transported via eastward wind to the Korean peninsula and then these aerosols induce high $PM_{10}$ concentrations in Korean peninsula. In order to estimate air quality considering anthropogenic and dust emissions, Comprehensive Air-quality Model with extension (CAMx) was applied to simulate $PM_{10}$ concentration. The predicted $PM_{10}$ concentrations without/with dust emissions were compared with observations at ambient air quality monitoring sites in China and Korea for 2008. The predicted $PM_{10}$ concentrations with dust emissions could depict the variation of measured $PM_{10}$ especially during Yellow sand events in Korea. The comparisons also showed that predicted $PM_{10}$ concentrations without dust emissions were under-predicted while predictions of $PM_{10}$ concentrations with dust emission were in good agreement with observations. This implied that dust emissions from desert and barren soil in southern Mongolia and northern China minimized the discrepancies in the $PM_{10}$ predictions in East Asia. The effect of dust emission on annual $PM_{10}$ concentrations in Korea Peninsula for year 2008 was $5{\sim}10{\mu}g/m^3$, which were about 20% of observed annual $PM_{10}$ concentrations.