DOI QR코드

DOI QR Code

Gallium nitride nanoparticle synthesis using nonthermal plasma with gallium vapor

  • You, K.H. (Korea Research Institute of Standards and Science) ;
  • Kim, J.H. (Korea Research Institute of Standards and Science) ;
  • You, S.J. (Department of Physics, Chungnam National University) ;
  • Lee, H.C. (Korea Research Institute of Standards and Science) ;
  • Ruh, H. (Korea Research Institute of Standards and Science) ;
  • Seong, D.J. (Korea Research Institute of Standards and Science)
  • Received : 2018.03.21
  • Accepted : 2018.10.01
  • Published : 2018.12.31

Abstract

Gallium nitride (GaN) nanoparticles are synthesized by the gallium particle trapping effect in a $N_2$ nonthermal plasma with metallic Ga vapor. A proposed method has an advantage of synthesized GaN nanoparticle purity because the gallium vapor from the inductively heated tungsten boat does not contain any impurity source. The synthesized particle size can be controlled by the amount of Ga vapor, which is adjusted using the plasma emission ratio of nitrogen to gallium, owing to the particle trapping effect. The synthesized nanoparticles are investigated by electron microscopy studies. High-resolution transmission electron microscopy (HRTEM) studies confirm that the synthesized GaN nanoparticles (10-40 nm) crystallize in a single-phase wurtzite structure. Room-temperature photoluminescence (PL) measurements indicate the band-edge emission of GaN at around 378 nm without yellow emission, which implies that the synthesized GaN nanoparticles have high crystallinity.

Keywords

Acknowledgement

Grant : Numerical simulation to overcome process limitations below 10 nm semiconductor, Plasma enhanced atomic-layer-deposition process and alternatives for gate spacer and multi-patterning technology

Supported by : Korea Research Institute of Standard and Science (KRISS), National Research Council of Science and Technology (NST), MOTIE (Ministry of Trade, Industry & Energy), Ministry of Science, ICT and Future Planning, Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. G. Nabi, C.B. Cao, Z. Usman, S. Hussain, W.S. Khan, F.K. Butt, et al., Pre-treatment effect of aqueous $NH_3$ on conductivity enhancement and PL properties of GaN nanowires, Mater. Lett. 70 (2012) 19-22. https://doi.org/10.1016/j.matlet.2011.11.096
  2. G. Nabi, C.B. Cao, W.S. Khan, S. Hussain, Z. Usman, M. Safdar, et al., Pre-treatment effect of aqueous NH3 on conductivity enhancement and PL properties of GaN nanowires, Appl. Surf. Sci. 257 (2011) 10289-10293. https://doi.org/10.1016/j.apsusc.2011.07.043
  3. S. Nakamura, The roles of structural imperfections in InGaN-based blue light emitting diodes and laser diodes, Science 281 (1998) 956-961. https://doi.org/10.1126/science.281.5379.956
  4. F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices, Nature 386 (1997) 351-359. https://doi.org/10.1038/386351a0
  5. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science 308 (2005) 1274-1278. https://doi.org/10.1126/science.1108712
  6. F. Widmann, B. Daudin, G. Feuillet, Y. Samson, et al., Growth kinetics and optical properties of self-organized GaN quantum dots, J. Appl. Phys. 83 (1998) 7618-7624. https://doi.org/10.1063/1.367878
  7. M. Shimada, et al., Synthesis of gallium nitride nanoparticles by microwave plasma-enhanced CVD, Chem. Vap. Depos. 16 (2010) 151-156. https://doi.org/10.1002/cvde.200906811
  8. Y. Azuma, M. Shimada, K. Okuyama, The synthesis of monodisperse ultrapure gallium nitride nanoparticles by MOCVD, Chem. Vap. Depos. 10 (2004) 11-13. https://doi.org/10.1002/cvde.200304158
  9. O.I. Mi, S.P. Ahrenkiel, D. Bertram, A.J. Nozik, Synthesis, structure, and optical properties of colloidal GaN quantum dots, Appl. Phys. Lett. 75 (1999) 478-480. https://doi.org/10.1063/1.124414
  10. A. Manz, A. Birkner, M. Kolbe, R.A. Fischer, Solution synthesis of colloidal gallium nitride at unprecedented low temperatures, Adv. Mater. 12 (2000) 569-573. https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<569::AID-ADMA569>3.0.CO;2-K
  11. A. Cruz-Lopez, A. Manzo-Robledo, O. Vazquez-Cuchillo, R. Zanella, R. Gomez, J. Santoyo-Salazar, A. Campos-Badillo, Synthesis and characterization of gallium nitride nanoparticles by using solvothermal softchemical methodology, Mater. Sci. Semicond. Process. 30 (2015) 435441.
  12. Guiquan Pan, Martin E. Kordesch, P. Gregory Van Patten, Room-temperature synthesis of GaN nanopowder, Commun. Chem. Mater. 18 (23) (2006) 5393.
  13. M. Shimada, Y. Azuma, K. Okuyama, Y. Hayashi, E. Tanabe, Plasma synthesis of light emitting gallium nitride nanoparticles using a novel microwave-resonant cavity, Jpn. J. Appl. Phys. 45 (2006) 328-332. https://doi.org/10.1143/JJAP.45.328
  14. H.D. Li, H.B. Yang, G.T. Zou, S. Yu, J.S. Lu, S.C. Qu, Y. Wu, Formation and photoluminescence spectrum of w-GaN powder, J. Cryst. Growth 171 (1997) 307-310. https://doi.org/10.1016/S0022-0248(96)00400-9
  15. R. Anthony, et al., A non-thermal plasma reactor for the synthesis of gallium nitride nanocrystals, Mater. Res. Soc. Symp. Proc. 892 (2006) 051-054.
  16. L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals, Nano Lett. 5 (2005) 655-659. https://doi.org/10.1021/nl050066y
  17. D.D. Koleske, A.E. Wickenden, R.L. Henry, M.E. Twigg, Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN, J. Cryst. Growth 242 (2002) 55-69. https://doi.org/10.1016/S0022-0248(02)01348-9
  18. Holman Gresback, Kortshagen, Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals, Appl. Phys. Lett. 91 (2007) 0931191-0931193.
  19. R.N. Carlile, S. Geha, J.F. OHanlon, J.C. Stewart, Electrostatic trapping of contamination particles in a process plasma environment, Appl. Phys. Lett. 59 (1991) 1167-1169. https://doi.org/10.1063/1.105545
  20. A. Bapat, et al., Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications, Plasma Phys. Contr. Fusion 46 (2004) B97-B109. https://doi.org/10.1088/0741-3335/46/12B/009
  21. A. Melzer, Introduction to Colloidal (Dusty) Plasmas, second ed., University of Greifswald, 2012, pp. 25-37.
  22. Uwe Kortshagen, Nonthermal plasma synthesis of semiconductor nanocrystals, J. Phys. D Appl. Phys. 42 (2009) 113001. https://doi.org/10.1088/0022-3727/42/11/113001
  23. A. Shimofusa, T. Kuga, O. Kido, H. Suzuki, Y. Saito, C. Kaito, GaN nanoparticle formation in plasma field, J. Phys. Soc. Jpn. 74 (2005) 2996-3001. https://doi.org/10.1143/JPSJ.74.2996
  24. R. Vincent, An analysis of the residual strains in epitaxial tin films, Philos. Mag. A 19 (1969) 1127-1139. https://doi.org/10.1080/14786436908228639
  25. Z.H. Feng, B. Liu, F.P. Yuan, J.Y. Yin, D. Liang, X.B. Li, Z. Feng, K.W. Yang, S.J. Cai, Influence of Fe-doping on GaN grown on sapphire substrates by MOCVD, J. Cryst. Growth 309 (2007) 8-11. https://doi.org/10.1016/j.jcrysgro.2007.08.032

Cited by

  1. Nonequilibrium plasma aerotaxy of size controlled GaN nanocrystals vol.53, pp.9, 2018, https://doi.org/10.1088/1361-6463/ab59e6