Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.4.181

Synthesis and Emission Properties of Dy3+-doped BaMoO4 Phosphors  

Cho, Shinho (Center for Green Fusion Technology and Department of Materials Science and Engineering, Silla University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.4, 2013 , pp. 181-187 More about this Journal
Abstract
$Dy^{3+}$-doped $BaMoO_4$ phosphor powders were synthesized by using the solid-state reaction method and their crystalline structure, morphology and size of particles, excitation and emission properties were investigated. The structure of all the phosphor powders, irrespective of the mol ratio of $Dy^{3+}$ ions, was found to be the tetragonal system with the main diffraction peak at (112) plane. The grain particles agglomerate together to form larger clusters with increasing the mol ratio of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 293 nm and weak multiline peaked in the range of 230~320 nm, which were due to the transitions of $Dy^{3+}$ ions. The emission of the phosphors peaking at 666 and 754 nm, originating from the transitions of $^4F_{9/2}{\rightarrow}^6H_{11/2}$ and $^4F_{9/2}{\rightarrow}^6H_{9/2}$ of $Dy^{3+}$ ions, was rather weak, while the intensity of blue and yellow emission peaking at 486 nm and 577 nm due to the transitions of $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ of $Dy^{3+}$ ions was significantly stronger. The experimental results suggest that the white-light emission can be realized by controlling the yellow-to-blue intensity ratio of $Dy^{3+}$ emission.
Keywords
Phosphor; Solid-state reaction; Emission;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Wang, Q. Yin, Y. Li, and M. Wang, J. Lumin. 97, 1 (2002).   DOI   ScienceOn
2 X. Li, L. Guan, M. Sun, H. Liu, Z. Yang, Q. Guo, and G. Fu, J. Lumin. 131, 1022 (2011).   DOI   ScienceOn
3 Y. Fang, W. Zhuang, Y. Hu, X. Ye, and X. Huang, J. Alloy. Compd. 455, 420 (2008).   DOI   ScienceOn
4 X. Zhang, Z. Lu, F. Meng, L. Hu, X. Xu, J. Lin, and C. Tang, Mater. Lett. 79, 292 (2012).   DOI   ScienceOn
5 L. A. Diaz-Torres, E. De la Rosa, P. Salas, V. H. Romero, and C. Angeles-Chavez, J. Solid State Chem. 181, 75 (2008).   DOI   ScienceOn
6 M. Malinowski, I. Pracka, P. Myziak, R. Piramidowicz, and W. Wolinski, J. Lumin. 72, 224 (1997).
7 Y. Fang, W. Zhuang, Y. Hu, X. Ye, and X. Huang, J. Alloy. Compd. 455, 420 (2008).   DOI   ScienceOn
8 B. Liu, L. Kong, and C. Shi, J. Lumin. 122, 121 (2007).
9 W. Zhao, S. An, B. Fan, S. Li, and Y. Dai, J. Lumin. 132, 953 (2012).   DOI   ScienceOn
10 P. Li, Z. Yang, Z. Wang, and Q. Guo, Mater. Lett. 62, 1455 (2008).   DOI   ScienceOn
11 F. Angiuli, F. Mezzadri, and E. Cavalli, J. Solid State Chem. 184, 1843 (2011).   DOI   ScienceOn
12 G. Du, X. Kan, Y. Han, Z. Sun, and W. Guo, Mater. Lett. 74, 229 (2012).   DOI   ScienceOn
13 J. I. Cai, R. Y. Li, C. J. Zhao, S. L. Tie, X. Wan, and J. Y. Shen, Opt. Mater. 34, 1112 (2012).   DOI   ScienceOn
14 J. Kuang, Y. Liu, and J. Zhang, J. Solid State Chem. 179, 266 (2006).   DOI   ScienceOn
15 L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou, and X. Xu, J. Solid State Chem. 191, 175 (2012).   DOI   ScienceOn
16 G. S. R. Raju, H. C. Jung, J. Y. Park, C. M. Kanamadi, B. K. Moon, J. H. Jeong, S. M. Son, and J. H. Kim, J. Alloy. Compd. 481, 730 (2009).   DOI   ScienceOn
17 X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu, and Y. Qian, J. Solid State Chem. 180, 3288 (2007).   DOI   ScienceOn
18 S. Cho and S. W. Cho, J. Korean Vac. Soc. 21, 93 (2012).   DOI   ScienceOn
19 U. Caldino, E. Alvarez, A. Speghini, and M. Bettinelli, J. Lumin. 132, 2077 (2012).   DOI   ScienceOn
20 Z. Rui and W. Xiang, J. Alloy. Compd. 509, 1197 (2011).   DOI   ScienceOn
21 S. Cho, J. Korean Vac. Soc. 22, 79 (2013).   DOI   ScienceOn