• Title/Summary/Keyword: yellow disease.

Search Result 354, Processing Time 0.025 seconds

Polioencephalomalacia diagnosed in necropsied cattle in Korea

  • Lee, Kyunghyun;Choi, Eun-Jin;Jung, Ji-Youl;Lee, Hyunkyoung;Kim, Ji-Hyeon;So, ByungJae
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.2
    • /
    • pp.91-95
    • /
    • 2018
  • Polioencephalomalacia (PEM) is a neurologic disease of ruminants diagnosed by pathological approach. There is very little information available to understand bovine PEM in Korea. In this study, we investigated the diagnostic rate and pathological features of PEM in 334 necropsied cases of cattle submitted to the Animal and Plant Quarantine Agency in Korea from 2015~2017. PEM was diagnosed only in 13 (3.9%) Hanwoo, the Korean native cattle, and sporadically occurred in our country. The disease was the most diagnosed in fall season, and the age of the cows ranged from 1 month to 3 year. In all PEM cases, softening, and yellow discoloration of the gray matter in the cerebrum and fluorescence at the sites using ultraviolet illumination were grossly observed. Microscopically abundance of glial cells with vacuolar large cytoplasm and neuronal necrosis were commonly observed. This study suggests that future studies are necessary to identify the cause and pathogenesis for the control of PEM in our country.

Isolation and identification of insect pathogenic fungus from silkworms with suspected white muscardine disease

  • Seul Ki Park;Chan Young Jeong;Hyeok Gyu Kwon;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Jong Woo Park
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • The value of silkworms as functional health food materials has increased, as has the interest in its disease control for stable production, and in the economic value of entomopathogenic microorganisms. In this study, we isolated and identified disease-causing fungi from white muscardine silkworms, and confirmed whether this strain could produce white muscardine silkworms. For the analysis of the cause of white muscardine disease in the infected silkworms, the fungi and prokaryotes causing the disease were identified, isolated, and identified using metagenome analysis. Metagenomic analysis detected a large amount of the fungus Metarhizium rileyi in silkworms, and a large amount of the bacterium Enterococcus mundtii, which was presumed to be the causative agent of the disease. For accurate identification of the fungi, these were purified by culture medium, and sequencing and phylogenetic tree analyses were performed using an internal transcribed spacer. As a result, M. rileyi, Cladosporium cladosporioides, and C. tenuissimum were identified. In general, M. rileyi is known to form green conidia, but in this study, white-yellow conidia were formed, indicating that the exact causative agent of the fungal disease cannot be estimated by diagnosing the symptoms. Thus, a diagnostic method is necessary for the continuously collection of required pathogens, and identifying their morphological and genetic characteristics.

Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection

  • Zhong, Conghao;Liu, Zemin;Qiao, Xibo;Kang, Li;Sun, Yi;Jiang, Yunliang
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1290-1302
    • /
    • 2021
  • Objective: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

Identification and Characterization of Alternaria iridiaustralis Causing Leaf Spot on Iris ensata in China

  • Luo, Huan;Tao, Ya Qun;Fan, Xiao Yan;Oh, Sang Keun;Lu, Hong Xue;Deng, Jian Xin
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.168-171
    • /
    • 2018
  • In 2016, a severe leaf spot disease was found on Iris ensata Thumb. in Nanjing, China. The symptom was elliptical, fusiform, or irregularly necrotic lesion surrounded by a yellow halo, from which a small-spored Alternaria species was isolated. The fungus was identified as Alternaria iridiaustralis based on morphological characteristics. The pathogenicity tests revealed that the fungus was the causal pathogen of the disease. Phylogenic analyses using sequences of ITS, gpd, endoPG, and RPB2 genes confirmed the morphological identification. This study is the first report of A. iridiaustralis causing leaf spots on I. ensata in China.

Occurrence of Powdery Mildew on Tomato Caused by Oidiopsis taurica (L v.) Arnaud (=Leveillula taurica) in Korea (Oidiopsis taurica (L v.) Arnaud (=Leveillula taurica)에 의한 토마토 흰가루병 발생)

  • 강수웅;권진혁;신원교;김희규
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.380-382
    • /
    • 1995
  • Yellow spot or blotch symptoms on the upper surface of leaf, without the production of velvet-like fungi on the lower surface of leaf as in the gray mold of tomato caused by Cladosporium fulvum, were observed in tomato (cv. Seokwang) plants in May, 1995, in a vinyl-house of the experimental plot of Gyeongnam Provincial Rural Development Administration, Chinju, Gyeongnam, Korea. We identified this disease as powdery mildew of tomato caused by Oidiopsis taurica (L v.) Arnaud (=Leveillula taurica), which was new to Korea. Conidia of the fungus were borne on uni- or bi-septated conidiophores which were developed through the stomata of the tomato leaf. The conidia were slender, clavate and variable in size (31~111.6$\times$13.1 ${\mu}{\textrm}{m}$). The fungal conidia isolated from tomato leaves were inoculated to tomato plants, and the occurrence of the same disease was confirmed based on the symptomatology and the morphology of the pathogen reisolated.

  • PDF

Candidatus Phytoplasma trifolii Associated with Witches' broom of Lespedeza cyrtobotrya M.

  • Kim, Young-Hwan;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.106-108
    • /
    • 2007
  • The Symptoms of witches' broom disease caused by phytoplasma including general stunting and yellowing, were observed in leafy lespedeza (Lespedeza cyrtobotrya M.) on Doam-myeon, Pyeongchang-gun, in 2006. Based on the sequence analysis of PCR-amplified 16S ribosomal DNA and 16S-23S spacer region DNA products using universal phytoplasma primers, the phytoplasma associated with leafy lespedeza witches' broom (LLWB) disease was identified as a member of Candidatus Pytoplasma trifolii. It was most closely related to alsike clover proliferation phytoplasma (99.8% similarity, accession no. AY390261), Candidatus Pytoplasma trifolii strain. RFLP patterns generated with AluI, HpaII clearly differentiated LLWB phytoplasma from the referenced phytoplasma strains, water dropwort witches' broom, mulberry dwarf, glehni aster yellow dwarf and jujube witches' broom. This paper is the first report on Candidatus Phytoplasma trifolii in leafy lespedeza identified at a molecular level.

Occurrence of Stem Rot Caused by Bipolaris cactivora on Different Species of Cactus and Its Pathogenicity (Bipolaris cactivora에 의한 선인장 줄기썩음병의 발생과 병원성)

  • 현익화;이상덕;황병철;고경일;정후섭;김병기
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.56-59
    • /
    • 2001
  • Stem rot of cacti was found at major cultivating areas including Koyang, Ansung and Eumsung of Korea in 2000. Bipolaris cactivora was consistently isolated from the lesions. The disease occurred on different species of cactus including Cereus peruvianus, C. neopithahaja f. monstruo년, C. tetragonus, Chamaeceresu silestrii, Ch. silvestrii, f. variegata, Gymnocalcium mihanovichii var. friedrichii. G. denudatum var. pentacantha, Hylocereus trigonus and Isolatocereus dumortier. Major symptoms on the cactus species except H. trigohus were almost identical. A rapid rot of the upper portion of the catus stem appeared, and became blackened and somewhat dry. On H. trigonus, the symptom was initially light yellow, water-soaked lesion, turned into light brown and dried to death. According to pathogenicity test, 10 out of 16 cactus species and varieties tested produced identical symptoms as found in the field. However, the fungi did not show pathogenicity to Notocactus scopa, Echinocactus grusonii, Eriocactus leninghausii, Lobivia nealeana, Mammillaria elongata var. intertexta.

  • PDF

A study on the application of the theory in ${\ulcorner}NAEKYUNG{\lrcorner}$ by Liu Wansu (하간(河間)의 "내경(內經)"이론 활용에 대한 연구)

  • Min, Jin-Ha;Jeong, Chang-Hyun
    • Journal of Korean Medical classics
    • /
    • v.18 no.2 s.29
    • /
    • pp.102-123
    • /
    • 2005
  • Nowadays people suffer from the excessive stress, emotional disorder, lack of sleepness, overeating of rich fatty diet and irregular schedule. These things accumulate Fire inside humanbody through many ways. Fire, then, brings out many kinds of disease. How to treat Fire is important theme of the medicine. Liu Wansu studied Fire as a important pathogenic factor. He evolved his theory about the relationship between the Xuanfu(玄府)- the sweat, Six Qi, emotional disorder and the climate condition and Fire. He payed great efforts to diagnose accurately and treat the disease on the ground of the theory based on The Yellow Emperors‘ Internal classic.

  • PDF

New Rust Disease of Korean Willow (Salix koreensis) Caused by Melampsora yezoensis, Unrecorded Pathogen in Korea

  • Yun, Yeo Hong;Ahn, Geum Ran;Yoon, Seong Kwon;Kim, Hoo Hyun;Son, Seung Yeol;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.335-337
    • /
    • 2016
  • During the growing season of 2015, leaf specimens with yellow rust spots were collected from Salix koreensis Andersson, known as Korean willow, in riverine areas in Cheonan, Korea. The fungus on S. koreensis was identified as the rust species, Melampsora yezoensis, based on the morphology of urediniospores observed by light and scanning electron microscopy, and the molecular properties of the internal transcribed spacer rDNA region. Pathogenicity tests confirmed that the urediniospores are the causal agent of the rust symptoms on the leaves and young stems of S. koreensis. Here, we report a new rust disease of S. koreensis caused by the rust fungus, M. yezoensis, a previously unrecorded rust pathogen in Korea.

Didymella gigantis sp. nov. Causing Leaf Spot in Korean Angelica

  • Gyo-Bin Lee;Ki Deok Kim;Weon-Dae Cho;Wan-Gyu Kim
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.393-400
    • /
    • 2023
  • During a disease survey in October 2019, leaf spot symptoms with a yellow halo were observed on Korean angelica (Anglica gigas) plants grown in fields in Pyeongchang, Gangwon Province, Korea. Incidence of diseased leaves of the plants in the investigated fields ranged from 10% to 60%. Morphological and cultural characteristics of two single-spore isolates from the leaf lesions indicated that they belonged to the genus Didymella. Molecular phylogenetic analyses using combined sequences of LSU, ITS, TUB2, and RPB2 regions showed distinct clustering of the isolates from other Didymella species. In addition, the morphological and cultural characteristics of the isolates were somewhat different from those of closely related Didymella spp. Therefore, the novelty of the isolates was proved based on the investigations. Pathogenicity of the novel Didymella species isolates was confirmed on leaves of Korean angelica plants via artificial inoculation. This study reveals that Didymella gigantis sp. nov. causes leaf spot in Korean angelica.