• Title/Summary/Keyword: yeast solution

Search Result 193, Processing Time 0.035 seconds

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

Decrease of Activity of Estrogenic Chemicals by Chlorination (염소산화에 의한 에스트로겐성 화학물질의 활성저감)

  • Lee, Byoung-cheun;Lee, Sang-hyup;Kamei, Tasuku;Magara, Yasumoto
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.98-105
    • /
    • 2005
  • The effects of chlorination on the elimination of three estrogenic chemicals such as $17{\beta}$-estradiol (E2), nonylphenol (NP) and bis-phenol A (BPA) were investigated using yeast two-hybrid assay (YTA), estrogen receptor competition assay (ER-CA), and high-performance liquid chromatography/mass spectrometer (LC/MS). Results of YTA, ECA and the analysis of LC/MS indicated that the estrogenic activity of above mentioned three endocrine disruptors were significantly reduced as the result of chlorination. The decrease in estrogenic activity paralleled with decrease in estrogenic chemicals under the influence of free chlorine. One common characteristic of estrogenic chemicals is the presence of a phenolic ring. Considering that a phenolic ring is likely to undergo some sort of transformation in aqueous chlorination solution, the above mentioned results may be applied to the rest of the other estrogenic chemicals in natural waters.

Antimicrobial Properties of Paper Treated with Acidic Liquid from Carbonized Rice Hull (왕겨초액 처리지의 항균 특성)

  • Min, Choon-Ki;Jo, Joong-Yeon;Shin, Jun-Sub;Lee, Se-Eun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.72-76
    • /
    • 2011
  • Antimicrobial activities of the Acidic Liquid originated from Carbonized Rice Hull(ALCRH) and the paper treated with ALCRH were investigated to apply ALCRH to functional paper products as a natural antimicrobial agent. ALCRH showed antimicrobial activity for bacteria and yeast, with higher performance for bacteria than for yeast. Antimicrobial activity was not developed on paper coated with ALCRH by bar coater probably due to the evaporation of antimicrobial compounds of ALCRH from the paper surface with time. Saturation of paper with ALCRH was essential to develop antimicrobial activity on the paper. Dipping paper in ALCRH solution was recommended as one of the effective ways to make antimicrobial paper.

The Extracellular Enzyme Activities in Culture Broth of Sparassis crispa. (꽃송이버섯(Sparassis crispa)의 세포외 효소활성)

  • Kim Ji-Young;Lim Chang-Soo;Kim Jae-Yong;Han Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.230-231
    • /
    • 2004
  • The mycelia of Sparassis crispa DSMZ 5201 were cultivated at $24^{\circ}C$ for 15 days in yeast-malt extract-glucose broth (pH 4.0) and the filtrate was used as crude enzyme solution to determined the extracellular enzyme activity. The specific activity of $\alpha$-amylase was 44.27 unit/protein. The specific activities of protease, CMCase, $\beta$-glucosidase, chitinase, exo-$\beta$-l,4-glucanase were relatively high. However, a very little activity of xylanase was found.

Studies on Thermal Resistance of Selected Yeast Strain for Pasteurization of Solid Packed Peach (복숭아 Solid Pack 적정(適定) 살균조건(殺菌條件) 구명(究明)을 위(爲)한 선발(選拔) 효모(酵母)의 열저항성(熱抵抗性)에 관(關)한 연구(硏究))

  • Koo, Young-Jo;Lee, Dong-Sun;Shin, Dong-Hwa;Yu, Tae-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.43-52
    • /
    • 1981
  • A series of thermal destruction studies of the most heat resistant yeast strain No. 15 among 61 isolates were conducted in order to establish the optimum pasteurization condition of peach solid pack. The results obtained are summarized as follows: 1. A survival curve of the selected yeast strain No. 15 at $58^{\circ}C$ consisted of heat labile and heat stable fraction, showing broken curve. 2. The actively growing cell showed less recovery rate than 10 day rested cell after agitation-growing for 90 hr. For heating menstrua, peptone solution gave higher recovery rate than peach juice. For recovery medium, YM agar gave higher recovery rate than peach juice agar. The selected yeast was more resistant to heat at pH 4.0 than at pH 3.5 in both heating menstrua and recovery medium. 3. Z value of TDT curve of the selected yeast (heating : at pH 3.5 in peach juice. recovery: at pH 3.5 in peach juice agar) was $4.8^{\circ}C$. 4. The selected yeast No. 15 was identified as Torulopsis candida. 5. In the inoculated pack test of 4 oz can, it was concluded that the optimum P.U. 70/5 was 168 (center temp; $78.5^{\circ}C$, initial temp; $18^{\circ}C$, processing time; 18 min, initial yeast count; $1.0{\times}10^7$ per can).

  • PDF

Development of a Method to Measure Hydrogen Sulfide in Wine Fermentation

  • Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1550-1554
    • /
    • 2008
  • A hydrogen sulfide $(H_2S)$ detecting tube was developed for the quantitative determination of $H_2S$ produced by yeast during laboratory scale wine fermentations. The detecting tube consisted of a small transparent plastic tube packed with an $H_2S$-sensitive color-indicating medium. The packed medium changed color, with the color change progressing upward from the bottom of the tube, upon exposure to $H_2S$ produced by yeast during fermentation. A calibration study using a standard $H_2S$ gas showed that the length of the portion that darkened was directly related to the quantity of $H_2S$ (${\mu}g$) with a high correlation coefficient ($r^2$=0.9997). The reproducibility of the $H_2S$ detecting tubes was determined with five repetitive measurements using a standard $H_2S$ solution [5.6${\mu}g$/200 ml (28 ppb)], which resulted in a coefficient of variation of 3.6% at this level of $H_2S$. With the sulfide detecting tubes, the production of $H_2S$ was continuously monitored and quantified from laboratory scale wine fermentations with different yeast strains and with the addition of different levels of elemental sulfur to the grape juice. This sulfide detecting tube technology may allow winemakers to quantitatively measure $H_2S$ produced under different fermentation conditions, which will eventually lead winemakers to better understand the specific factors and conditions for the excessive production of $H_2S$ during wine fermentation in a large production scale.

Studies on the Production of Foods and Feeds Yeast from the Hydrolyzate of Corn Starch Cake (옥수수 전분박(澱粉粕)을 이용(利用)한 식사료(食飼料) 효모생산(酵母生産)에 관한 연구(硏究))

  • Sung, Nack-Kie;Kim, Myung-Chan;Ki, Woo-Kyung;Kim, Jong-Kyu;Yun, Han-Dae
    • Applied Biological Chemistry
    • /
    • v.19 no.4
    • /
    • pp.219-226
    • /
    • 1976
  • To meet the need of protein feed and fine more efficient ways of returning waste to resources, we have carried out the study of the production of yeast for foods and feeds from the corn starch cake. The present study includes the method for acid-hydrolysis, the selection of yeast capable of utilizing hydrolyzate of the corn starch cake, and culture condition of Candida tropicalis under the liquid culture and the semisolid culture. Obtained results were as follows. 1. Hydrochloric acid was more excellent on the hydrolysis of the corn starch cake than sulfuric acid, and the yield of sugar was maximum, 57.2%, when the corn starch cake was hydrolyzed with 1.0% of hydrochloric acid at 2.0kg/cm for 30 minutes. 2. As the acid solution content was increased, more sugar was liberatedfrom the mixture, until the acid solution-substrate ratio reached 10:1. Beyond this point, no further increase was observed. To prepare the cultural medium of semisolid fermentation, a acid solution to substrate ratio of 3:1 appeared to be optimum. 3. Out of 6 yeast strains, Candida tropicalis had excellent growth on the hydrolyzate of the corn starch cake, and optimum temperature and initial pH were $30^{\circ}C$ and 6.0 respectively. 4. Optimum liquid medium of Candida tropicalis is ures 0.3%, potassium phosphate monobasic 0.15g and magnesium sulfate 0.04g in 100ml of the hydrolyzate of the corn starch cake, while optimum semisolid medium is ammonium chloride 0.4g, potassium phosphate monobasic 0.1%, magnesium sulfate 0.04%. 5. Candida tropicalis could assimilate the sugar in the hydrolyzate up to more than 88.75%, and a yield of dry yeast reached 19.13% to the corn starch cake under the liquid culture. 6. Compared to the that of the untreated corn starch cake, the cellulose content of the semisolid fermented cake decreased by 3.76% to 14.7%, whereas dry yeast contents increased by 13.89%.

  • PDF

Development of hypothermic preservation solution for the human dermal fibroblast using protein hydrolysates (단백질 가수분해 물을 이용한 인간 피부 섬유아세포의 저온 보존액 개발)

  • Byoun, Soon-Hwi;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.312-320
    • /
    • 2009
  • Stable cell preservation is an essential factor in the regenerative medicine for cell therapies and transplantation of biologic materials. In this study, we studied to provide more stable hypothermic preservation by protection of cell damage during the preservation at $4^{\circ}C$. The result of searching for key components that have excellent efficacy in hypothermic preservation of cells, we have identified the fact that the hypothermic preservation adding protein hydrolysates such as yeast hydrolysate is far superior to others. All protein hydrolysates that are derived from animal, plant and microbe sources have superior efficacy, especially the peptides which have molecular weights under 10 kDa have the best efficacy among the components of protein hydrolysate. The protein hydrolysates prevented the decrease of ATP level in the cells caused by hypothermic environment and they inhibited the generation of ROS. Adding antioxidants and control agents of osmotic pressure were showed to have more superior efficacy in hypothermic preservation. Finally, KUL261 solution (DMEM/F12 1 : 1 medium, yeastolate 1%, $\alpha$-tocopherol $100{\mu}M$, dextran 2.5%), the preservation solution developed in this study, showed the best efficacy in both cell viability and cell growth more than other conventional preservation solutions. In conclusion, the improved hypothermic preservation solution that contains the protein hydrolysates as a key component provide the best preservation efficacy. It provides better efficacy than other preservation solutions and will contribute to both the development of regenerative medicine and global commercialization in this therapeutic field.

Production of Alcohol from Starch without cooking: A chemical gelatinization method (무증자(無蒸煮)전분법에 의한 알코올생산(生産): 화학적(化學的) 호화법(糊化法))

  • Park, Kwan-Hwa;Oh, Byung-Ha;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.27 no.1
    • /
    • pp.52-54
    • /
    • 1984
  • Ethanol fermentation from the chemically gelatinized starchy material was examined. The critical concentration of sodium hydroxide solution for gelatinization was dependent on the species of starch; 0.4M for potato and 0.6M for tapioca at room temperature. For alcohol fermention the starchy material was gelatinized by addition of sodium hydroxide solution, neutralized by sulfuric acid, and then yeast was added. The amount of $CO_2$ evolved during ethanol fermentation indicates that non-fermentable material was not produced from the starch by chemical gelatinization. In ethanol fermentation of potato and tapioca starch no significant difference was observed between the thermal and the chemical gelatinization.

  • PDF

Mass Inoculation Technique of Fusarium Disease in Rice (갈색엽고병의 인공접종법에 관한 연구)

  • Kwon Shin Han;Song Hi Sup;Kim Jae Rhee;Tomio Yamaguchi
    • Korean journal of applied entomology
    • /
    • v.12 no.1
    • /
    • pp.23-27
    • /
    • 1973
  • In an effort to find effective inoculation method of Fusarium nivale, this experiment was conducted. The results obtained are summarized as follows: (1) Distilled water-spore suspension of this fungus was inoculated on rice seedling and the result showed that negligible disease symptoms were observed when the inoculated plants were placed in a moist chamber for one day, whereas considerable symptoms were indicated when kept for two days. (2) After giving physical wounds by wind or wooden stick to the rice seedling, distilled water-spore suspenion was sprayed on them and considerable diseased spots were formed. (3) Sufficient disease occurrence was due to the addition of $1\%$ rice leaf extract, glucose, polypeptone, and yeast extract solution to the spore suspension. (4) In distilled water, spore germination was poor, while in nutrient added solution good germination rate as well as anastomosis was found. (5) A new rice variety Tong-il turned out to be more susceptible to Fusarium nivale than Pung-kwang.

  • PDF