• Title/Summary/Keyword: yeast rice

Search Result 353, Processing Time 0.023 seconds

Antimicrobial Effect of Monascus Strains Isolated from Ang-Khak (홍국으로부터 불리한 Monascus 균주의 향균효과)

  • 류춘선;김영배;황한준
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.271-277
    • /
    • 1995
  • Total 29 Monascus strains were isolated from Ang-Khak and 4 of them were selecte based on the relative intensity of soluble red pigment and growth rate. The optimum growth temperature of the selected isolates was 32.5$^{\circ}C$ on malt extract agar(MEZ) plate. The optimum growth pH was 5.0 on czapek yeast extract agar plate, while it was pH 6.2 or 6.5 on MEA plate. Isolate No. 116, especially, showed the strongest animicrobial activity aganist Bacillus subtilis and Staphylococcus aureus but much less aganist Escherichia coli and Enterobacter aerogenes. The maximun antimicrobial activity of isolate No. 116 against St. aureus was achieved at initial pH 5.3 on rice extract broth. The acitivity was increased with increasing amount of culture broth concentrate of isolate No. 116.

  • PDF

Cultural Characteristics and Fruiting Body Production in Cordyceps bassiana

  • Lee, Je-O;Shrestha, Bhushan;Sung, Gi-Ho;Han, Sang-Kuk;Kim, Tae-Wong;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.118-121
    • /
    • 2010
  • Single ascospore isolates of Cordyceps bassiana were observed for their colony pigmentation on Sabouraud Dextrose agar plus Yeast Extract (SDAY) plates and were inoculated in a brown rice medium for production of fruiting bodies. Colony pigmentation did not show any relationship with perithecial stromata formation. The isolates were also grown on opposite sides of SDAY agar plates and were observed for vegetative compatibility. Neither vegetative compatibility nor perithecial stromata could be found to be related to each other. It was concluded that fertile fruiting body production was independent of colony pigmentation and vegetative compatibility. Synnemata formation was found to be more common than perithecial stromata formation. This might be due to its highly conidiogenous anamorphic stage, i.e., Beauveria bassiana.

Optimal substrate mixture ratio for mycelial growth of oyster mushroom in Lao PDR (라오스 느타리버섯 균사배양 배지의 적정 배합비율)

  • Chang, Hyun-You;Viengkham, Sengsoulivong;Phannourath, Viravahn;Baek, Woon-Ho;Yang, Kyu-Nam;Lee, Yong-Ha;Chang, Jong-Geun
    • Journal of Mushroom
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 2007
  • This study was carried out to investigate the mycelial growth and density of Laos oyster mushroom treated straw, rice hull, mixture rate of straw and rice hull and beer wastes respectively. In case of straw 70%, rice hull 40%, 50%, straw and rice hull 4 : 6, soil type and yeast type of Laos beer wastes mixture, the mycelial growth and density are the best respectively.

  • PDF

Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV

  • Pak, Jung-Hun;Chung, Eun-Sook;Shin, Sang-Hyun;Jeon, Eun-Hee;Kim, Mi-Jin;Lee, Hye-Young;Jeung, Ji-Ung;Hyung, Nam-In;Lee, Jai-Heon;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Oryza grandiglumis Chitinase IVa (OgChitIVa) cDNA encoding a class IV chitinase was cloned from wild rice (Oryza grandiglumis). OgChitIVa cDNA contains an open reading frame of 867 nucleotides encoding 288 amino acid residues with a predicted molecular weight of 30.4 kDa and isoelectric point of 8.48. Deduced amino acid sequences of OgChitIVa include the signal peptide and chitin-binding domain in the N-terminal domain and conserved catalytic domain. OgChitIVa showed significant similarity at the amino acid level with related monocotyledonous rice and maize chitinase, but low similarity with dicotyledoneous chitinase. Southern blot analysis showed that OgChitIVa genes are present as two copies in the wild rice genome. It was shown that RNA expression of OgChitIVa was induced by defense/stress signaling chemicals, such as jasmonic acid, salicylic acid, and ethephon or cantharidin and endothall or wounding, and yeast extract. It was demonstrated that overexpression of OgChitIVa in Arabidopsis resulted in mild resistance against the fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. RT-PCR analysis showed that PR-1 and PR-2 RNA expression was induced in the transgenic lines. Here, we suggest that a novel OgChitIVa gene may play a role in signal transduction process in defense response against B. cinerea in plants.

Antimicrobial Efficiency in the Fermented Slurry of Unpolished Rice (현미 발효 슬러리의 항균활성)

  • Choi, Hakjoon;Gwak, Gyeongja;Choi, Dabin;Park, Jaeyoung;Cheong, Hyeonsook
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.307-313
    • /
    • 2015
  • Unpolished rice (UR) is considered to be a healthy alternative to white rice when coping with chronic diseases. In the present study, the fermented slurry of unpolished rice (FSUR) was evaluated with respect to its antimicrobial activities and biochemical characteristics, including the quantities of sugar, total soluble sugar, organic acids, free amino acids, pH, and physiological activity. The antimicrobial efficiency of FSUR was assessed using the paper disc-agar diffusion method. FSUR exhibited strong antimicrobial activity against six pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, and Yersinia enterocolitica) and two fermentation strains (Gluconacetobacter intermedius and Lodderomyces elongisporus). The antimicrobial activity of FSUR was higher than the commercial antibiotics, carbenicillin ($50{\mu}g/ml$) and tetracycline ($50{\mu}g/ml$) against S. aureus, E. coli, L. monocytogenes, P. aeruginosa, S. typhimurium, Y. enterocolitica, and L. elongisporus. Also FSUR had a high antioxidant activity. The microorganisms were isolated from FSUR using tryptic soy broth and yeast extract-peptone-dextrose agar media. The isolated microorganisms were characterized using physiological and biochemical analyses as well as by 16S rRNA gene sequencing and phylogenic analysis. 16S rRNA gene sequence analysis showed that the isolated microorganisms had a high similarity to G. intermedius, Lactobacillus casei, Lactobacillus plantarum, and Acetobacter peroxydans.

Properties of Baechu Kimchi treated with Black Rice Water Extract (흑미를 첨가하여 항산화성이 강화된 배추김치의 개발 및 품질 특성)

  • Mo, Eun-Kyoung;Kim, Seung-Mi;Yang, Sun-A;JeGal, Sung-A;Choi, Young-Sim;Ly, Sun-Yung;Sung, Chang-Keun
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2010
  • To develop a new functional kimchi with antioxidative properties, salted baechu was soaked in black rice water extract for 6 h at room temperature. The antioxidative property of the water extract was $78.75{\pm}1.18%$ that of the control (0.1% [w/v] alpha-tocopherol). The black rice gel was added to the baechu kimchi preparation. The color of baechu kimchi treated with black rice water extract changed to dark violet and/or black. Control kimchi and black rice water-treated kimchi were stored at $4^{\circ}C$ for 30 days. No significant differences were detected between the control and the black rice water-treated group in the early stages of fermentation. As fermentation time increased, pH decreased and titratable acidity increased rapidly in control kimchi. However, such marked changes were not evident in test kimchi. The hardness value of black rice water-treated kimchi was higher than that of control kimchi after the midpoint of the fermentation period. The storage life of baechu kimchi treated with black rice water extract was prolonged by up to 5 days compared with control samples, owing to a decline in lactic acid bacteria and yeast levels during the final fermentation period in black rice water-treated kimchi. The total phenolic levels and the antioxidative capacity of black rice water-treated kimchi (83%) were approximately 1.5-fold higher than in control kimchi (57%). In sensory evaluation, black rice water-treated kimchi scored higher than did control kimchi using a blind test protocol.

Isolation and Culture Medium Optimization for Thermostable Extracellular α-Amylase Production by Thermophilic Alicyclobacillus acidocaldarius (세포외 고온성 α-아밀라제를 생산하는 Alicyclobacillus acidocaldarius 의 분리 및 효소생산용 최적 배양 조건)

  • Kumar, G. Satheesh;Chandra, M. Subhosh;Mallaiah, K.V.;Sreenivasulu, P.;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.472-477
    • /
    • 2012
  • A thermophilic $Alicyclobacillus$ $acidocaldarius$, which produces thermostable ${\alpha}$-amylase, was isolated from the hot water effluent of a boiled rice mill near Tirupati, Andhra Pradesh, India. The effect of different culture conditions on the growth and production of extracellular ${\alpha}$-amylase by thermophilic $A.$ $acidocaldarius$ was investigated in laboratory scale. The results showed that the optimum conditions for the production of ${\alpha}$-amylase are a temperature of $60^{\circ}C$, pH of 6.0, and medium starch concentration of 1.0%, and yeast extract and tryptone of 0.2%. Surfactants, like Tween-20 and SDS, up to 0.02%, were found to increase the bacterial growth and enzymes. Further increase in their concentration resulted in significantly decreased enzyme production.

Molecular characterization of yeast Snf1 homologue (sucrose non-fermenting gene) from Magnaporthe grisea

  • Yi, Mi-Hwa;Jeong, Jae-Gyu;Kim, Bong-Gyu;Ahn, Joong-Hoon;Lee, Yong-Hwan
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.84.2-85
    • /
    • 2003
  • Magnaporthee grisea causes the devastating blast disease of rice. Entensive research has been conducted on infection mechanisms, particularly on appressorium formation and penetration, of this fungus during the last decade. However, the role(s) of cell-wall-degrading enzymes (CWDEs) on pathogenesis is not clearly demonstrated at molecular level. Many CWDES in plant pathogenic fungi including M. grisea are redundant; that is, there are multiple genes encoding enzymes with a similar or overlapping spectrum of activities. It is laborious to isolate all of the genes encoding related enzymes and to construct mutants lacking all 9f them. Thus, we considered alternative strategies to address the role of CWDEs in pathogenesis. Since expression of CWDE genes Is repressed by a simple sugar, as the first step, we cloned a Snfl (sucrose non-fermenting) gene (MgSnf1) from M. grisea. The predicted amino acid sequence showed a high identity with other Snf1 genes from various fungi. To elucidate molecular function of MgSnf1, a transformant lacking MgSnf1 was created by targeted gene replacement. En glucose, sucrose, and xylan the MgSnf1 mutant grew normally but in pectin and complex media, it grew slower than wild type. Expression of various CWDEs in MgSnf1 mutant was investigated and found that expression of some CWDEs is repressed. However, no significant difference was observed in conidial germination, appressorium formation, and pathogenicity in MgSnf1 mutant. However, MgSnf1 functionally complemented a yeast MgSnf1 mutant. These results suggest that MgSnf1 is involved in regulation of CWDEs and MgSnf1 is dispensable in pathogenicity of M. grisea.

  • PDF

Production of Xylanase by Bacillus sp. DSNC 101 (Bacillus sp. DSNC 101에 의한 Xylanase 생산)

  • 조남철
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.344-349
    • /
    • 1997
  • A strain of Bacillus sp. DSNC 101, isolated from soil, produced up to 305.0 units/ml of xylanase when grown on te medium containing 2.0% xylan, 2.0% yeast extract and 0.4% K2HPO4. The strain produced xylanase in the presence of xylan, soluble starch, rice straw, Avicel, maltose, and lactose as a sole carbon source, but the enzyme was not synthesized in the presence of xylose, glucose or arabinose. The crude xylanase preparation did not show hydrolytic activity towards cellulosic substrates and PNPX, a chromogenic substrate for $\beta$-xylosidase. The temperature and pH optima for the xylanase production were 4$0^{\circ}C$ and 8.0, respectively. Xylanase synthesis was repressed by glucose, but not by xylose. The hydrolysis products of xylan catalyzed with the culture filtrate were xylooligosaccharides such as xylobiose and xylotriose but xylose was not detected by tin layer chromatography.

  • PDF

Quality Characteristics and Brewing of Li (례주(醴酒)의 제조와 품질특성)

  • Kim, Seon-Jae;Jung, Soon-Teck
    • Journal of the Korean Society of Food Culture
    • /
    • v.16 no.4
    • /
    • pp.371-377
    • /
    • 2001
  • Li was a sweet beverage containing $2{\sim}3$ percents ethyl alcohol made from malt by spontaneous fermentation from ancient custom to fifteenth century. Li was changed to the rice wine being a sweet beverage of low alcohol content using nuruk as starter and the sikhae which is non-alcoholic fermented beverage. Li was made for drinking and ceremony in Korea, China and Japan. It disappeared from the beverage items along with its method of manufacture from malt, but in Korean had made Li using nuruk until recent. We made Li according to Book of Imwon-Keongjae Ji (The book of country economy) methods for reappearance of Li. Fermentation characteristics for the production of Li with Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces sake were investigated. Among the yeast strains tested, Li fermented with S. sake showed higher alcohol production. Total sugar decreased considerably during the whole period of fermentation(30 hours), while ethyl alcohol content increased at $2.98{\sim}3.52%$. As the fermentation progressed, the pH decreased until the 30 hours of fermentation, while total acid increased during the same period. In fermentation of 36 hours, Li consisted of about $2.98{\sim}3.52%$ of alcohol content, $5.3{\sim}6.0%$ of total sugar, $1.45{\sim}2.21mg%$ of reducing sugar and total acidity were reached up to $24.4{\sim}29.5mg%$ for Li manufactured with S. cerevisiea sake, S. bayanus and S. sake.

  • PDF