• 제목/요약/키워드: yeast protein

검색결과 956건 처리시간 0.027초

Mechanisms and Physiological Roles of Mitophagy in Yeast

  • Fukuda, Tomoyuki;Kanki, Tomotake
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.35-44
    • /
    • 2018
  • Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.

Expression of Escherichia coli Heat-labile Enterotoxin B Subunit (LTB) in Saccharomyces cerevisiae

  • Rezaee Mohammad Ahangarzadeh;Rezaee Abbas;Moazzeni Seyed Mohammad;Salmanian Ali Hatef;Yasuda Yoko;Tochikubo Kunio;Pirayeh Shahin Najar;Arzanlou Mohsen
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.354-360
    • /
    • 2005
  • Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately $1.9\%$ of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.

T 세포 특이적 전사인자인 LyF-1과 HIV-1 Nef의 상호 작용 (Interaction between HIV-1 Nef and LyF-1, the T Cell Specific Transcription Factor)

  • 이미선;이경화;김정우
    • 대한바이러스학회지
    • /
    • 제30권3호
    • /
    • pp.211-217
    • /
    • 2000
  • Nef is a lentiviral protein involved in pathogenesis of AIDS, but its molecular mechanism of action remains incompletely understood. Here we report the isolation of the interacting protein with the HIV-1 Nef, using the yeast two hybrid system for expression cloning. One of the positive colonies was selected as the final candidate for the interacting protein gene. The nucleotide sequencing revealed that this interacting protein is Human Ikaros/LyF-1. This protein interacted with the C-terminal region of Nef specifically in yeast system, not with the N-terminal region. This interaction was also confirmed by in vitro binding assay.

  • PDF

리보핵산 관련물질을 함유한 Yeast Extracts 제조에 Streptomyces faecalis MSF 배양액의 이용

  • 임억규
    • 한국미생물·생명공학회지
    • /
    • 제25권5호
    • /
    • pp.512-519
    • /
    • 1997
  • RNA accumulating strain of Torulopsis versatilis MT-1 was cultured in molasses medium for higher contents of RNA in cell. Yeast cells were harvested at logarithmic phase on synchronous culture. Yield of cells on dry base to input sugar was 59.5%. Crude protein content was 55.1% in cell. RNA content was 13.9%. Some problems found in the process for the preparation of yeast extracts were improved by the addition of culture broth of Streptomyces faecalis MSF which secrete RNase (5' nuclease and 5' adenylic acid deaminase). When the culture broth of S. faecalis MSF was added in autolysis process 46% of RNA in cell was converted to I and G(5' inosinic acid and 5' guanylic acid) in extract. By addition of 3-7% culture broth of S.faecalis MSF in autolysis or enzymolysis process at the start or early stage, RNA in extract was converted easily to I and G and protein in cells was easily extracted and hydrolyzed to amino acid. Taste of those yeast extracts was delicious. The yeasty smell in yeast extracts was removed. And cell debris was easily removed from extract.

  • PDF

Light Mediated Yeast Cell Growth and Metabolism

  • Dowd Jr, Christopher J.;Tanner, Robert D.
    • KSBB Journal
    • /
    • 제6권3호
    • /
    • pp.299-307
    • /
    • 1991
  • In this paper the effect of light on non-aerated Baker's Yeast(Saccharomyces cereuisiae) production and the protein excretion to the extracellular fluid is studied. Previous results in our laboratory indicate that at pH=5 and T-32$^{\circ}C$ yeast may be affected by light, but those differences seem to be within statistical variation of the data. In this paper, cell and extracellular protein concentrations along with redox potential are monitored for batch fermentations in the presence and absence of light at pH levels of 3 and 5 and at 31$^{\circ}C$, in order to explore whether possible light effects can be more readily discerned at lower pH values. Yeast particle size distributions are also determined over the course of fermentation using a particle counter in order to add one more measuring tool to our usual cell and total protein measurements. An apparently noticeable difference in the redox potential is observed between the light and the dark runs for early times for the pH=3 runs. The particle size distributions show differences in the particle diameters between light and dark runs at pH=3, but those differences fall within one standard deviation of the mean particle diameters.

  • PDF

The Growth, Effect of COD-Reduction, and Flocculation Characteristics of Candida rugosa in Sugar Beet Stillages

  • Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.207-211
    • /
    • 1991
  • Yeast fermentation at $40^{\circ}C$ was conducted for microbial protein production and COD reduction in three different sugar beet stiIlages by a thermo- and acid-tolerant yeast Candida rugosa isolated from East Africa. The assimilation proceedings of some main components such as protein, carbohydrate, total titrable acids and glycerol in stillages were observed with growth kinetics of the yeast. Most of glycerol and organic acids were rapidly assimilated at the beginning of the fermentation. Protein assimilation was slowly accelerated with the proceeding of fermentation time and its assimilation rate reached only 14.2%-28.4%. Though Candida rugosa was a flocculent yeast, the flocculation characteristics of the yeasts grown in three stillages were different from each other.

  • PDF

효모세포의 당과 아미노산의 운반에 관한 연구 II (Sugar and Amino Acid Transport in Yeast)

  • 민경희;권영명
    • 미생물학회지
    • /
    • 제16권4호
    • /
    • pp.148-154
    • /
    • 1978
  • Saccharomyces cerevisiae J170, a mutant, was used for $DL-^{14}C-leucine$ uptake during the sporulation and vegetative stage. $^{14}C-Leucine$ uptake into yeast cells appeared the highest at pH 6.0, indicating the same result of glucose transport, $^{14}C-Leucine$ uptake in sporulation period was higher than in growth phase, showing the evidence that leucine is more required for protein synthesis. This tendency has the evidence tht leucine is more required for protein synthesis. This tendency has the evidence that leucine is more required for protein synthesis. This tendency has been also supported from the result of Km values of leucine uptake in two stages of yeast. Leucine uptake was inhibited by 2,4-dinitrophenol in two stages of yeast. This means that leucine transport system is associated with energy dependent in both stages. The contents of all amino acid in growth phase cells were higher than those of sporulation stge cells, and those of methionine and tyrosine were showed in trace during the sporulation stage. In contrast, the content of glutamic acid in sporulation stage was compared with those of other amino acids.

  • PDF

Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease

  • Luo, Shaoxiang;Yan, Liming;Zhang, Xiaohua;Yuan, Li;Fang, Qin;Zhang, Yong-An;Dai, Heping
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2135-2145
    • /
    • 2015
  • VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine.

효모표면표출(YSD) 기법을 이용한 참돔 이리도바이러스(RSIV) 외피단백질의 발현 (Expression of the red sea bream iridovirus (RSIV) capsid protein using a yeast surface display method)

  • 서승석;박미례;황진익;이택견
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.5412-5418
    • /
    • 2014
  • 참돔 이리도바이러스(RSIV)는 이리도바이러스과에 속하며, 많은 아시아 국가에서 감염성 어류 질병을 유발하여 양식산업에 커다란 경제적 손실을 입히는 바이러스이다. 우리는 최근에 효모표면발현(yeast surface display, YSD)를 사용하여 다양한 해양바이러스를 동정하고 검출할 수 있는 새로운 실험시스템을 개발하였다. 이 연구에서 우리는 참돔 이리도 바이러스(RSIV)의 외피단백질을 효모표면 발현 기법을 이용하여 발현시켰다. 바이러스 외피단백질 유전자는 염기서열 데이터베이스에 기초하여 합성되었고, 효모발현벡터인 pCTCON2으로 서브클로닝되었다. 이 벡터는 효모 strain EBY100으로 형질전환 되었다. Flow cytometry와 Western blot analysis를 통해 RSIV 외피단백질의 발현을 확인하였다. ${\beta}$-mercaptoethanol 처리에 의해 발현된 바이러스 외피단백질을 효모 표면로부터 분리하였다. 이 연구의 결과는 YSD 시스템이 해양바이러스 외피단백질을 획득하기 위한 매우 좋은 발현시스템이라는 것을 보여준다.

RAS inhibitor를 이용한 항암제의 개발에 관하여

  • 어미숙
    • 미생물과산업
    • /
    • 제19권4호
    • /
    • pp.32-35
    • /
    • 1993
  • ras는 활성화 형태인 GTP bound form과 비활성화 형태인 GDP bound form의 두 형태로 존재하며 두 형태를 매개하는 regulatory protein들에 의해 그 activity가 조절된다. 또한 ras는 GTP와 GDP에 강한 친화성이 있으며 세포내에는 GTP보다 GDP가 더 많이 있어서 평소에는 ras가 GDP와 결합하고 있다가 활성화될때만 GTP와 결합하는 것으로 추정된다. GDP bound ras는 guanine nucloetide exchange protein(GEP)에 의해 활성화된 GTP bound form으로 전환되며 ras의 기능이 발휘된 후에는 GTPase activating protein(GAP)에 의해 비활성화된다. Yeast의 경우 IRA1과 2의 product가 GAP의 역할을 하는 것으로 알려져 있고 CDC25 gene의 product가 GEP의 기능을 담당하는 것으로 알려져 있다. NF1 gene은 Von Recklinghausen Neurofibromatosis Type I 질병을 가진 환자에게서 발견되었는데 부분적으로 sequencing한 결과에 따르면 yeast의 IRA1/2, mammalian GAP gene product와 protein homology가 높은 것으로 나타났다. Yeast의 경우 IRA1/2 gene의 손실이나 mammalian ras gene의 transformation으로 인한 heat shock sensitivity가 NF1 gene(2,3) 혹은 GAP(4)의 expression으로 suppression된 것으로 보아 NF1이 GAP protein으로서 ras를 불활성화 시킨다는 것이 판명되었다. 결론적으로 ras의 활성은 GTP bound 혹은 GDP bound의 양쪽형태를 이동하면서 조절되는데 이 기능은 GAP과 GEP 또는 그의 유사 protein들에 의해 수행되며 이러한 regulatory protein들은 growth factor, cytokine 그리고 protein kinase 같은 signal에 의해 활성화된다고 생각된다. 본 총설에서는 ras protein의 여러가지 성질보다는 ras의 modification과 관련하여 항암제로 사용할 수 있는 ras에 specific한 약품개발의 가능성과 현재 알려진 ras의 inhibitor를 중심으로 논하고자 한다.

  • PDF