Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05041

Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease  

Luo, Shaoxiang (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences)
Yan, Liming (State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences)
Zhang, Xiaohua (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences)
Yuan, Li (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences)
Fang, Qin (State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences)
Zhang, Yong-An (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences)
Dai, Heping (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 2135-2145 More about this Journal
Abstract
VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine.
Keywords
Yeast surface display; grass carp reovirus; protein VP7; yeast-based vaccine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goochee CF, Gramer MJ, Andersen DC, Bahr JB, Rasmussen JR. 1991. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (NY) 9: 1347-1355.   DOI
2 Gietz RD, Schiestl RH, Willems AR, Woods RA. 1995. Studies on the transformation of intact yeast-cells by the Liac/S-DNA/Peg procedure. Yeast 11: 355-360.   DOI
3 Furlong DB, Nibert ML, Fields BN. 1988. Sigma-1 protein of mammalian reoviruses extends from the surfaces of viral particles. J. Virol. 62: 246-256.
4 Fang Q, Seng EK, Ding QQ, Zhang LL. 2008. Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch. Virol. 153: 675-682.   DOI
5 Miyajima A, Otsu K, Schreurs J, Bond MW, Abrams JS, Arai K. 1986. Expression of murine and human granulocyte-macrophage colony-stimulating factors in S. cerevisiae: mutagenesis of the potential glycosylation sites. EMBO J. 5: 1193-1197.
6 Lueking A, Holz C, Gotthold C, Lehrach H, Cahill D. 2000. A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr. Purif. 20: 372-378.   DOI
7 Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J. 1991. The AGA1 product is involved in cell-surface attachment of the Saccharomyces cerevisiae cell-adhesion glycoprotein a-agglutinin. Mol. Cell. Biol. 11: 4196-4206.   DOI
8 Rose MD, Winston F, Hieter P. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, New York
9 Romanos MA, Scorer CA, Clare JJ. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488.   DOI
10 Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 493-497.
11 Rangel AAC, Rockemann DD, Hetrick FM, Samal SK. 1999. Identification of grass carp haemorrhage virus as a new genogroup of aquareovirus. J. Gen. Virol. 80: 2399-2402.   DOI
12 Prutsky GJ, Domecq JP, Elraiyah T, Prokop LJ, Murad MH. 2014. Assessing the evidence: live attenuated influenza vaccine in children younger than 2 years. A systematic review. Pediatr. Infect. Dis. J. 33: E106-E115.   DOI
13 Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y. 1993. Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 268: 26338-26345.
14 Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. 2013. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32: 1478-1488.   DOI
15 Song Y, Choi MH, Park JN, Kim MW, Kim EJ, Kang HA, Kim JY. 2007. Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl. Environ. Microbiol. 73: 4446-4454.   DOI
16 Shibasaki S, Maeda H, Ueda M. 2009. Molecular display technology using yeast - arming technology. Anal. Sci. 25: 41-49.   DOI
17 Shibasaki S, Aoki W, Nomura T, Miyoshi A, Tafuku S, Sewaki T, Ueda M. 2013. An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog. Dis. 69: 262-268.   DOI
18 Schreuder MP, Deen C, Boersma WJA, Pouwels PH, Klis FM. 1996. Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine 14: 383-388.   DOI
19 Shao L, Sun X, Fang Q. 2011. Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity. Virol. J. 8: 347-353.   DOI
20 Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120.   DOI
21 Sander P, Grunewald S, Bach M, Haase W, Reilander H, Michel H. 1994. Heterologous expression of the human D2S dopamine receptor in protease-deficient Saccharomyces cerevisiae strains. Eur. J. Biochem. 226: 697-705.   DOI
22 Wang TH, Chen H, Chen H. 1994. Preliminary studies on the susceptibility of Gobiocypris rarus to hemorrhagic virus of grass carp. Acta Hydrobiol. Sinica 18: 144-149.
23 Virgin HW 4th, Bassel-Duby R, Fields BN, Tyler KL. 1988. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J. Virol. 62: 4594-4604.
24 Van Den Hazel HB, Kielland-Brandt MC, Winther JR. 1996. Review: biosynthesis and function of yeast vacuolar proteases. Yeast 12: 1-16.   DOI
25 Ueda M, Tanaka A. 2000. Genetic immobilization of proteins on the yeast cell surface. Biotechnol. Adv. 18: 121-140.   DOI
26 Tian YY, Ye X, Zhang LL, Deng GC, Bai YQ. 2013. Development of a novel candidate subunit vaccine against grass carp reovirus Guangdong strain (GCRV-GD108). Fish Shellfish Immunol. 35: 351-356.   DOI
27 Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, et al. 2001. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat. Med. 7: 625-629.   DOI
28 Teunissen AWRH, Vandenberg JA, Steensma HY. 1993. physical localization of the flocculation gene flo1 on chromosome-I of Saccharomyces cerevisiae. Yeast 9: 1-10.   DOI
29 Tanaka T, Yamada R, Ogino C, Kondo A. 2012. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl. Microbiol. Biotechnol. 95: 577-591.   DOI
30 Tamaru Y, Ohtsuka M, Kato K, Manabe S, Kuroda K, Sanada M, Ueda M. 2006. Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol. Prog. 22: 949-953.   DOI
31 Zhu K, Chi Z, Li J, Zhang F, Li M, Yasoda HN, Wu L. 2006. The surface display of haemolysin from Vibrio harveyi on yeast cells and their potential applications as live vaccine in marine fish. Vaccine 24: 6046-6052.   DOI
32 Zhu B, Liu GL, Gong YX, Ling F, Song LS, Wang GX. 2014. Single-walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus. Fish Shellfish Immunol. 41: 279-293.   DOI
33 Zhang L-L, Shen J-Y, Lei C-F, Li X-M, Fang Q. 2008. High level expression of grass carp reovirus VP7 protein in prokaryotic cells. Virol. Sinica 23: 51-56.   DOI
34 Wildt S, Gerngross TU. 2005. The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3: 119-128.   DOI
35 Dean N. 1999. Asparagine-linked glycosylation in the yeast golgi. Biochim. Biophys. Acta 1426: 309-322.   DOI
36 Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M. 2010. Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using alpha-agglutinin for production of oral vaccines. Biotechnol. Prog. 26: 542-547.
37 Bandell A, Woo J, Coelingh K. 2011. Protective efficacy of live-attenuated influenza vaccine (multivalent, Ann Arbor strain): a literature review addressing interference. Exp. Rev. Vaccines 10: 1131-1141.   DOI
38 Andreu C, Del Olmo M. 2013. Yeast arming by the Aga2p system: effect of growth conditions in galactose on the efficiency of the display and influence of expressing leucine-containing peptides. Appl. Microbiol. Biotechnol. 97: 9055-9069.   DOI
39 Duncan PA, Gallagher S, McKerral L, Tsai PK. 2004. Assessing the viability of a clumpy mnn9 strain of Saccharomyces cerevisiae used in the manufacture of recombinant pharmaceutical proteins. J. Ind. Microbiol. Biotechnol. 31: 500-506.   DOI
40 Ding Q, Yu L, Ke L, Cai Y. 1991. Study on infecting other fishes with grass carp hemorrhagic virus. Acta Hydrobiol. Sinica 6: 371-373.
41 Chen C, Sun X, Liao L, Luo S, Li Z, Zhang X, et al. 2013. Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgM from Ctenopharyngodon idella. Sci. China Life. Sci. 59-65.   DOI
42 Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. 2006. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1: 755-768.   DOI
43 Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329-3330.   DOI
44 Carter NJ, Curran MP. 2011. Live attenuated influenza vaccine (FluMist (R); Fluenz (TM)): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 71: 1591-1622.   DOI
45 Boder ET, Wittrup KD. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557.   DOI
46 Berner VK, Sura ME, Hunter KW Jr. 2008. Conjugation of protein antigen to microparticulate beta-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl. Microbiol. Biotechnol. 80: 1053-1061.   DOI
47 Livi GP, Hicks JB, Klar AJ. 1990. The sum1-1 mutation affects silent mating-type gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 409-412.   DOI
48 Laemmli UK. 1970. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227: 680-685.   DOI
49 Jiang Y, Ahne W. 1989. Some properties of the etiological agent of the hemorrhagic disease of grass carp and black carp, pp. 227-240. In Ahne W, Kurstak E (eds.). Viruses of Lower Vertebrates. Springer, Berlin, Heidelberg.
50 Herscovics A, Orlean P. 1993. Glycoprotein biosynthesis in yeast. FASEB J. 7: 540-550.   DOI
51 Guisez Y, Tison B, Vandekerckhove J, Demolder J, Bauw G, Haegeman G, et al. 1991. Production and purification of recombinant human interleukin-6 secreted by the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 198: 217-222.   DOI