• 제목/요약/키워드: yeast cells

검색결과 915건 처리시간 0.029초

효모의 환경내성에 대하여 1 (A Study on Environmental Tolerances of Yeast)

  • 임억규;정영호;김준호
    • 미생물학회지
    • /
    • 제16권3호
    • /
    • pp.93-102
    • /
    • 1978
  • Saccharomyces cerevisiae strain M was cultured in a molasses-containing media with repeated transplantations of the yeasts from one culture to another to adapt to molasses. After that only different amounts of phosphorous and nitrogen sources were added to the media. And then some variations during the culture time and the effects of consituents of cell mass on the functional activity and sensitivity of the cell were investigated. The results obtained were summarized as follows : 1. In the same culture condition of yeasts, the carbohydrates and trehaloses contents were more remarkably increased when small amounts of phosphate and nitrogen sources were added, then when alrge amounts were added, but yield percentage on assimilated sugars was lower. 2. The content of trehalose in yeast cells was reduced remarkably at the early stage in the culture, but this increased remarkably at later stage. When small amounts of nitrogen and phosphate were added to the culture medium, the amount of thehalose in the cells increased greasly. 3. The more protein content was present in the yeast cells, the smaller the carbohydrate and trehalose content, but more amino-N, RNA and moisture content were present in the cells. And in this case fermentability of the cells was stronger, but sugar tolerance was lower. 4. During the preservation period of compressed yeast cells at different temperature, the higher the temperature was, the more rapidly the amount of trehalose in the cells decreased. And in the cell where the amount of trehalose in the cells decreased. And in the cell where the amount of trehalose(carbohydrate) was large and the amount of protein was small, the amount of trehalose decreased at a slower rate during the preservation period.

  • PDF

Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae

  • Kwak, Geun-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.113-118
    • /
    • 2009
  • Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against $H_2O_2$-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.

Calcium Alginate에 포괄된 Yeast Invertase의 고정화 효소에 관한 연구 (II. 고정화 효모의 효소학적 특성) (Calcium Alginate-entrapped Yeast Whole-cell Invertase (II. Enzymatic Properties of the Immobilized Cells))

  • 방병호;이상건;양철영
    • 한국식품영양학회지
    • /
    • 제2권2호
    • /
    • pp.14-20
    • /
    • 1989
  • A strain of Saccharomyces cerevisiae BY-366 was isolated to produce a strong sucrose-hydrolyzing enzyme. After entrapment of yeast cell invertase with alginate, enzymatic properties of immobilized cells were investigated. The results are as follows. 1. The optimum pH of invertase in immobilized cells and non- immobilized cells was 6.0 and 5.0, and pH stability of invertase in immobilized cells and non- immobilized cells was 6.0 and 5.0, respectively. 2 Activation energy of immobilized cells was 4.7 kcal/mol. 3 The immobilized preparation exhibited high resistance to heat and urea Induced denaturation. 4, The bead size less than 2 mm in diameter was desirable. 5. In spite of repeated use, the enzyme activity of immobilized cells was inhibited slightly in batch reaction, and a small column of the immobilized preparation could hydrolyze relatively high concentration of sucrose almost quantitatively to more than 6 days.

  • PDF

PC카메라와 일반광학현미경을 이용한 빵효모 배양액의 효모세포 자동계수 (Automatic Counting of Yeast Cells in Baker's Yeast Culture Using PC Camera and Conventional Light Microscope)

  • 이형춘
    • KSBB Journal
    • /
    • 제26권1호
    • /
    • pp.87-91
    • /
    • 2011
  • Automatic counting of yeast cells in baker's yeast culture was tried using a conventional light microscope equipped with a pc camera. Relatively good binary image was obtained by using white LED as microscope light source, but uneven brightness distribution in original image hindered counting accuracy. A block binarization method using local thresholds proportional to local brightnesses was used to get improved binary images. The brightnesses of the blocks were expressed as the value component in HSV color model. Good quality binary images were obtained by binarization on $8{\times}6$ blocks of original images and connected-component labelling of the binarized images produced reliable counting results in the concentration range $1.4{\times}10^5/mL{\sim}1.4{\times}10^7\;cells/mL$.

방사선과 염화수은의 일시 및 반복 복합 처리된 효모세포의 산화적 스트레스 적응과 형태 변화 (Effect of Ionizing Radiation and Mercury Chloride (II) on Cell Morphology in Yeast Cells Frequently and Temporarily Treated with Both Stressors)

  • 김수현;김진규
    • 환경생물
    • /
    • 제28권2호
    • /
    • pp.101-107
    • /
    • 2010
  • Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. Ionizing radiation (IR) is an active tool for destruction of cancer cells and diagnosis of diseases, etc. IR induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm and nucleus. Yeasts have been a commonly used material in biological research. In yeasts, the physiological response to changing environmental conditions is controlled by the cell types. Growth rate, mutation and environmental conditions affect cell size and shape distributions. In this work, the effect of IR and mercury chloride (II) on the morphology of yeast cells were investigated. Saccharomyces cerevisiae cells were treated with IR, mercury chloride (II) and IR combined with mercury chloride (II). Non-treated cells were used as a control group. Morphological changes were observed by a scanning electron microscope (SEM). The half-lethal condition from the previous experimental results was used to the IR combined with mercury. Yeast cells were exposed to 400 and 800 Gy at dose rates of 400Gy $hr^{-1}$ or 800 Gy $hr^{-1}$, respectively. Yeast cells were treated with 0.05 to 0.15 mM mercury chloride (II). Oxidative stress can damage cellular membranes through a lipidic peroxidation. This effect was detected in this work, after treatment of IR and mercury chloride (II). The cell morphology was modified more at high doses of IR and high concentrations of mercury chloride(II). IR and mercury chloride (II) were of the oxidative stress. Cell morphology was modified differently according to the way of oxidative stress treatment. Moreover, morphological changes in the cell membrane were more observable in the frequently stress treated cells than the temporarily stress treated cells.

Growth of Budding Yeasts under Optical Trap

  • Im, Kang-Bin;Kim, Hyun-Ik;Kim, Soo-Ki;Kim, Chul-Geun;Oh, Cha-Hwan;Song, Seok-Ho;Kim, Pill-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.19-22
    • /
    • 2007
  • Optic tweezer is powerful tool to investigate biologic cells. Of eukaryotic cells, it was poorly documented regarding to optic trapping to manipulate yeasts. In preliminary experiment to explore yeast biology, interferometric optical tweezers was exploited to trap and manipulate budding yeasts. Successfully, several budding yeasts are trapped simultaneously. We found that the budding direction of the daughter cell was almost outward and the daughter cell surrounded by other yeasts grows slowly or fail to grow. Thus it was assumed that neighboring cells around budding yeast may be critical in budding and the growth of daughter cells. This is first report pertaining to the pattern of yeast budding under the optical trap when multiple yeasts were trapped.

Production of Yeast Diet for Aquaculture in Batch Fermenters

  • MOON Jung-Hye;KIM Joong Kyun
    • 한국수산과학회지
    • /
    • 제29권6호
    • /
    • pp.882-887
    • /
    • 1996
  • Production of yeast diet has been carried out in batch fermenters under optimum culture conditions. The fermentation of Candida utilis on a $2\%$ complex medium resulted in 1.22 g/L/h productivity and $65\times10^8$ viable cells/ml, and the addition of $15{\mu}M$ zinc to the medium increased both the productivity and the number of viable cells just a little more. In the case of the fermentation of Kluyveromyces fragilis, the highest value of the biomass productivity, 1.94 g/L/h, was obtained on a $2.5\%$ fructose medium with $70\times10^8$ viable cells/ml, and $1\%$ peptone was found to be a growth factor in this fermentation. When $3.5\%$ NaCl was added to the given medium, both the biomass productivity and the number of viable cells decreased significantly in each fermentation, but this may be considered to preserve yeast diet long without osmotic lysis.

  • PDF

고정화 효모를 이용한 발포성 포도주의 휘발성 성분 (Volatile Compounds of Sparkling Wine Using Immobilized Yeast)

  • 최진상;이용수;이건표
    • 한국식품영양과학회지
    • /
    • 제27권1호
    • /
    • pp.24-28
    • /
    • 1998
  • In order to investigate the possibility of using immobilizing yeast cells with the eliminating purpose of the ridding process in sparkling wine production by the traditional method, the changes in chemical components during and after bottle fermentation by immobilizing yeast cells with alginate were tested. The most volatile compounds, excepting some compounds, were not appreciable different in sparkling wines which obtained from various samples compared. After bottle fermentation, sparkling wine fermented with undergoing riddling process, and tested. The results showed that the taste and aroma of the sparkling wine produced with using immobilized cells were very similar to that produced with using free cells.

  • PDF

에탄올 내성 효모의 선별과 그의 에탄올 내성 기작 (Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism)

  • 지계숙;박소영;이지나;이영하;민경희
    • 미생물학회지
    • /
    • 제29권2호
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

Degradation of Phospholipids of Yeast after Freeze-Thawing

  • Hahn, Young-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제1권2호
    • /
    • pp.252-255
    • /
    • 1996
  • As an index of freeze-injury of yeast, the leakage of intracellular substances from yeast cells after freeze-thawing was investigated. It was found that much more ultraviolet-absorbing substances leaked out from non-freeze tolerant yeast (NETY) than from freeze-tolerant yeast. Furthermore, the rate of leakage of cellular substances form NFTY during incubation exceeded that of FTY, indicating that NFTY is more susceptible to freeze-injury than FTY during frozen-storage. An apparent degradation of phospholipid was observed during incubation of perfermented frozen-cells of NFTY, while little change of phospholipid occurred in FTY, These results suggested that the difference in the sensitivity of yeast might be due to the strength of cell membrane in terms of the degradation of phospholipid by enzymes, phospholipases, attached to cell membranes.

  • PDF