• Title/Summary/Keyword: yarn thickness

Search Result 64, Processing Time 0.021 seconds

Bending Behavior of Coated Yarns

  • Koo, Young-Seok
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.148-152
    • /
    • 2001
  • Cotton yarns were coated with a polymer solution to hold surface fibers to the yam body, which caused fiber-fly generation during knitting process. The physical property of the coated yarn, especially a bending rigidity was investigated in order to evaluate the performance of the coated yam during knitting. SEM images showing the surface condition of the coated yarn demonstrated that the thickness of a coating material increased as the concentration of the coating solution increased. The results of the bending rigidity measured using KES-FB2 system showed that the bending rigidity of the coated yam increased as the concentration of the coating solution increased. The results also revealed the possibility that yarn coated with a low amount of coating material should be employed for further research of reducing fiber-fly generation during knitting process.

  • PDF

Physical Properties of 1×1 Rib Knitted Fabrics Using A/W (A/W사로 편성한 1×1 리브편의 물성 평가)

  • Yea, Su-Jeong;Kim, In-Young
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.629-634
    • /
    • 2012
  • Knitted fabric using acrylic/wool blended yarn (A/W) is increasingly used in the knit industry; subsequently, research on knitted fabric using A/W has increased. This study presents an scientific database from evaluating physical properties of $1{\times}1$ rib stitch using A/W. In this study,$1{\times}1$ rib stitch using A/W were made at various knitting tensions (dial no. 2-6) and the number (4-6) of ply yarn. The physical properties of $1{\times}1$ rib stitch using A/W were measured and analyzed. The density was in the range 5.5-6.4 wales/cm and 4.0-5.6 courses/cm, respectively. The density increased when less plying yarns and more knitting tension were added during knitting. The thickness was in the range of 1.592-2.362 mm and the tensile strength was in the range 32.75-53.63 Kgf/mm. The burst strength was in the range 107.8-139.2 $N/cm^2$. Thickness, tensile strength, and burst strength increased as the number of ply yarn and the knitting tension increased. The elongation and the recovery extension rate were in the range 102.29-112.13% and 96.4-97.7%, respectively. The heat retention rate was in the range 59.3-65.1%. There was no difference of the elongation and the recovery extension rate and the heat retention rate by the knitting tension and the number of the ply yarn. The permeability was in the range 170.5-396.3 $cm^3/cm^2/sec$. Air permeability decreased as the number of ply yarn and the knitting tension increased. The pilling properties were excellent for all $1{\times}1$ rib stitches.

Appearance, stretch, and clothing pressure changes in nylon SCY knitted fabric by structure (Nylon SCY 편성물의 편성조직에 따른 외형, 신장특성 및 의복압 변화)

  • Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.17-26
    • /
    • 2019
  • This research aims to obtain useful data on the development of compression garment products with high-stretch knitted materials. Using nylon SCY, four specimens were knitted. Then, appearance (width, length, weight, thickness), stretch property (stretch, recovery) and clothing pressure were measured and their interrelation was analyzed. In the comparison of appearance features, yarn floating caused shrinkage in both course and wale directions of the specimens. Yarn overlapping by tucking caused a release in the course direction and shrinkage in the wale direction. Also, structural change was affected by the weight and thickness change of the knitted fabric. In the analysis of fabric stretch, yarn floating reduced the extension in course direction and increased that in wale direction of the knitted fabric. However, yarn overlapping reduced the elongation in both directions. In the analysis of recovery, yarn floating and overlapping raised fabric recovery in both directions, and tuck structure was superior to float in recovery. In the analysis of clothing pressure, 'Plain-Float' structured fabrics showed a higher clothing pressure than 'Plain' and the clothing pressure value of 'Plain-Tuck' was lower than that of 'Plain'. As for the correlation between fabric appearance, stretch property, and clothing pressure, the appearance change in course direction had a major influence on the clothing pressure. The shrinkage of appearance led to a decrease in stretch and an increase in clothing pressure.

A Study on the Mechanical Properties of Fabrics for Korean Folk Clothes (Part 3) On the core-spun yarn woven fabrics (한복지의 역학적특성에 관한 연구 (제3보) 코어방적계 한복지)

  • Sung Su-Kwang;Kwon Oh-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.1 s.29
    • /
    • pp.79-87
    • /
    • 1989
  • In the part 1 and 2, relations were found between fundmental mechanical properties and primary hand values, performance of Korean women's summer and fall & winter fabrics. In this paper, in order to investigate the hand values and mechanical properties such as tensile, shearing, bending, compression, surface and thickness & weight of the core-spun yarn woven fabrics for Korean folk clothes were measured by KES-F system. The experimental results are statistically analyzed in the aspects of the mechanical properties, their effects on the hand values, formation of weared clothes and transformation behavior. The correlation in the hand values are analyzed, too. Furthermore, there mechanical properties are discussed in comparison with those values for kimono fabrics. The main results are summarized as follows: 1. The core-spun yarn woven fabrics for Korean folk clothes have box-shaped silhouette based on higher bending rigidity and shear elasticity. 2. The core-spun yarn woven fabrics for Korean folk clothes are inferior to silk fabrics, superior to polyester fabrics in formation. 3. A drapability and wrinkle recovery of core-spun yarn woven fabrics for Korean folk clothes formation for weared clothes are inferior to polyester fabrics, superior to silk fabrics. 4. A primary factor of mechanical properties contribute to the hand values of core-spun yarn woven fabrics for Korean folk clothes are same as the Korean women's winter fabrics, except for flexibility with soft feeling. 5. As for the hand values of core-spun yarn woven fabrics for Korean folk clothes, stiffness, anti-drape stiffness are superior to those of polyester fabrics. And also, flexibility with soft feeling, scrooping feeling of core-spun yarn woven fabrics have greater values as compared with silk fabrics for Korean folk clothes.

  • PDF

Mechanical and Thermal Properties of Industrial Protective Fabric with Recycled m-Aramid and Natural Fiber

  • Sung, Eun Ji;Baek, Young Mee;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.227-236
    • /
    • 2018
  • As consciousness of safety becomes an important social issue, the demand for protective clothing is increasing. Conventional flame-retardant cotton working wear has low durability, and working wear with m-aramid fibers are stiff, heavy, less permeable, and expensive. In this study, recycled m-aramid and cotton have been blended to produce woven fabric of different compositions to enhance high performance and comfort to solve aforementioned problems. The fabrics were analyzed according to constituents and various structural factors. Mechanical properties were measured using KES-FB system. The measured thermal properties are TGA, $Q_{max}$, TPP and RPP. Fabric with polyurethane yarn covered by m-aramid/cotton spun yarn is observed to have good wearability. The fabric of open end spun yarn showed more stiffness than that of ring spun yarn. The sample with the high count of yarn has more smooth surface. In addition, high m-aramid content fabric is considered to have relatively high stiffness when using as clothing. In TGA the fabric with higher m-aramid content showed more stable decomposition behavior. The fabric having rough surface showed lower heat transfer properties in $Q_{max}$. The influence of the fabric thickness was important in convection and radiant heat test.

Measurement of Thickness of Still Air Layer above Fabrics (직물의 표면 정지 공기층의 두께 측정)

  • 나영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.7
    • /
    • pp.1117-1123
    • /
    • 1997
  • This paper describes the measurement of thickness of still air layer above fabrics and its relationship to structural properties of fabrics. Rayon fabrics - of both filament and spun - and wool nylon blended fabrics varied in terms of surface hairiness were used. Temperature and relative humidity above fabrics were measured at the various distances from the fabric surface. Increase in the thickness of fabric, fabric weight, yarn count, and crimp resulted increase in thickness of still air layer above fabric. Surface hairiness of fabrics as well as the structural properties were found to be related with the thickness of still air layer above fabrics.

  • PDF

The Physical Properties of Knitted Fabric with Hanji/Rayon (한지와 레이온 복합사 편성물의 물성)

  • Kim, Su Mi;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.151-158
    • /
    • 2013
  • This study presents basic knitted fabric data on the use of ply yarn with rayon yarn and eco-friendly/high-valued Hanji yarn. Physical properties (gauge, thickness, burst strength, air permeability, stiffness, Qmax, dimensional stability and surface image) of Hanji 100%, rayon 100% and Hanji/rayon 50:50 knitted fabrics are investigated. The results are as follows. Course direction of gauge decrease in the following order: rayon 100% > Hanji/rayon 50/50 > Hanji 100%. In addition wale direction of gauge decrease in the following order: Hanji 100% > Hanji/rayon 50/50 > rayon 50/50. Thickness and air permeability decrease in the following order: Hanji 100% > Hanji/rayon 50/50 > rayon 100%. Burst strength decrease in the following order: rayon 100% > Hanji 100% > Hanji/rayon 50/50. Stiffness and Qmax decrease in the following order: rayon 100% > Hanji/rayon 50/50 > Hanji 100%. Laundry for dimensional stability is knitted fabric with Hanji/rayon 50/50 than rayon 100% and Hanji 100% improved using neutral detergent and stable at $20^{\circ}C$. From surface image observation, the cracks of Hanji 100% and fibrils of rayon 100% decrease when using knitted fabric with Hanji/rayon 50/50.

Fuzzy-PWM control for adjustment of power rate of a multiple point temperature controller (다점 온도 제어 장치의 power 공급율 조정을 위한 fuzzy-PWM제어)

  • 이장명;윤종보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.80-92
    • /
    • 1997
  • This research focuses onan efficient control method of temperature for multiple points using only one processor. For a yarn production system, the surface temperature control of heaters are very important for quality control. Therefore, we designed a temperature controller for a draw and twist machine and applied Fuzzy-PWM algorithm to the controller. If we use a processor for the temperature control of multiple points with the conventional ON/OFF control, the control performance of the system becomes poor. To overcome these problems, we developed a new Fuzzy-PWM algorithm for the adjustment of power rate to the heaters in the conventional ON/OFF control. It is shown that this algorithm has the same effects as the PID algorithm for the temperature control of each point. The proposed algorithm is robust against the production condition and environment such as the reference temperature and the thickness of yarn, since the power rate to the heater is adjusted by Fuzzy Rules derived from the values of the reference termperatureand the thickness of yarn. To obtain optimal Fuzzy rulees, the control simulations are perfodrmed through the modelling of the heater and simulation of Fuzzy rules. This algorithm is applied for the multiple pont temperature controller and showed satisfactory performance.

  • PDF

A Study on the Appearance Characteristics of Selected Fabrics for Ecology Trends (에콜로지 트렌드 소재의 외관 특성에 관한 연구)

  • Lee, Jung-Min;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.12 no.4
    • /
    • pp.131-142
    • /
    • 2008
  • One of the major fashion trends is the naturalism and ecology-conscious trend. The natural looks required in the trend require somewhat random distribution of yarn linear density, which results in irregular appearance along the yarn. This is a technically challenging work of producing yarns that look natural far from being artificial yet maintaining the intricately aesthetic randomness without causing process disturbances. This study focused on the characteristics of fabrics made of natural cellulosic fibers including hemp, ramie, flax, and polyester fabrics. Image analysis of the fabric samples included area measurement of yarn specimen, FFT and inverse FFT. Measurements of bending resistance, thickness, air permeability, and weight were also implemented to interpret the structural differences.

Fabrication of Highly Conductive Yarn using Electroless Nickel Plating (무전해 니켈 도금법을 이용한 고성능 도전사의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.