• Title/Summary/Keyword: y-shape steel sheet

Search Result 121, Processing Time 0.048 seconds

A Study on the Burr Height in Shearing Steel Sheet for Automobile Parts (자동차용 강판의 전단작업시 발생하는 버어에 관한 연구)

  • Ko, D.L.;Jung, D.W.;Kim, J.M.;Lee, K.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.47-52
    • /
    • 2007
  • Punching, blanking, trimming and slitting are widely used in shearing processes in sheet metal forming of automotive parts. In this paper the effects of clearance, cutting angle and tool sharpness on the formation of burr were investigated by experimental method in shearing processes of steel sheets, SPCEN and SPRC35E. The amount of burr and the shapes of burr were different between two kinds of steel sheets. It has been shown that the cutting angle of the shearing blade had no effects on the height of burr when the clearance was below the 10% of the steel sheet thickness, and also that the height and shape of burr were not affected by the cutting angle when the wear of shearing blade was below the 10% of the steel sheet thickness. It was known that there had been existing the critical clearance of 10 to 15% for the tested steel sheet, SPCEN and SPRC35E.

  • PDF

Formability Test of Boron Steel Sheet at Elevated Temperature for Hot Stamping (핫스탬핑용 보론강의 고온 성형한계선도 평가 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • The hot stamping process is an innovative forming method that could prevent the cracking of high strength steel sheets. The formability test of boron steel sheet using forming limit diagrams at elevated temperature is very complicated and time consuming job. In this paper, an alternative test method to evaluate the formability of boron steel in hot stamping has proposed. It measured the FLD0 instead of whole strain combinations of FLD with the tensile test machine and specially designed test rig. Test results shows that the proposed test method can simulate the plain strain condition fracture and can make the FLD of boron steel sheet at elevated temperature with less effort.

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

A Study on the Improvement of Drawing Limit in Stainless Butt Products using Warm Deep Drawing Process (온간 성형법을 이용한 스테인리스 버트 제품의 성형한계 향상에 관한 연구)

  • 김승수;나경환;김종호;한창수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.203-210
    • /
    • 1995
  • The rapid progress of automobile industry has led to a demand for sheet metal products and the new forming technology for complex product is required. In Deep Drawing process of steel sheet, especially stainless steel sheet at room temperture, some intermediate annealing need to be added to lessen strain hardening effect. The present study is concerned with the wram deep drawing of stainless steel sheet. In order to reduce the number of working process. the limit drawing ration is considered as main parameter. In this study, the effect of process variables such a sblank holder force, working temperature and lubricant on limit drawing ration is investigated . Experiments are carried out for the hemisherical and sqare shape at room and warm temperature respectively. The drawing loads and thickness deviation accoring to process variables measured . As the result of apploying those experimental data to the commerical butt product, the number of process can be reduced and good quality of products can be obtained.

  • PDF

Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate (1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구)

  • Lee, Dong-Hwan;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.

A Study on Elliptical Cup Drawing of Yoke products, Automobile (자동차 TOKE 제품의 타원용기 성형에 관한 연구)

  • 박동환;배원락;박상봉;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.385-388
    • /
    • 2000
  • During the deep drawing process an initially flat blank is clamped between the die and the blank holder after which the punch moves down to deform the clamped blank into the desired shape. In general, sheet metal forming may involve stretching, drawing, bending or various combinations of those basic modes of deformation. The deformation problems of sheet metal working involve non-linearity in geometry and material. In this work, The punch load and thickness strain of electro-galvanized sheet steel (SECD) for elliptical deep drawing are examined under the various process conditions including, punch shape radius, die shape radius. The changes of punch load and thickness strain distribution of the deformed elliptical cup are affected by the size of each die shape radius.

  • PDF

Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process (박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발)

  • 김태정;정창균;양동열;한수식
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process (초고장력강과 알루미늄 5052 소재의 클린칭 접합특성)

  • Lee, C.J.;Kim, J.Y.;Lee, S.K.;Ko, D.C.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

Development of Flow Forming Process for Hollow Shaped Parts from Seamless Steel Tube (유동성형을 이용한 중공형 부품 제조공정 개발)

  • Kwon, Y.N.;Kim, S.W.;Kim, B.J.;Park, E.S.;Cha, D.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.611-618
    • /
    • 2011
  • Flow forming is an incremental forming process in which rollers are used to form cylindrical parts with repeated turning of both roller and starting material. Both sheet and tube can be used as the starting material. The process is highly useful for producing hollow shaped parts from a tube, with the benefit of the average strain in the final shape being significantly lower than that from a sheet material. In the present study, the flow forming process was studied and optimized for producing a hollow shaped part from seamless steel tube by both experiment and numerical analysis. Upon considering the difficulty of forming seamless steel sheet, the thickness reduction was distributed over several tool paths. In the end, an optimum process condition was attained, and the experiment verified the simulation results.

Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet (400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계)

  • Park, K.D.;Jang, J.H.;Kim, S.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF